11 results on '"Verduzco, R"'
Search Results
2. Understanding the effect of liquid crystal content on the phase behavior and mechanical properties of liquid crystal elastomers.
- Author
-
Barnes M, Cetinkaya S, Ajnsztajn A, and Verduzco R
- Abstract
Liquid crystal elastomers are stimuli-responsive, shape-shifting materials. They typically require high temperatures for actuation which prohibits their use in many applications, such as biomedical devices. In this work, we demonstrate a simple and general approach to tune the order-to-disorder transition temperature ( T
ODT ) or nematic-to-isotropic transition temperature ( TNI ) of LCEs through variation of the overall liquid crystal mass content. We demonstrate reduction of the TNI in nematic LCEs through the incorporation of non-mesogenic linkers or the addition of lithium salts, and show that the TNI varies linearly with liquid crystal mass content over a broad range, approximately 50 °C. We also analyze data from prior reports that include three different mesogens, different network linking chemistries, and different alignment strategies, and show that the linear trend in TODT with liquid crystal mass content also holds for these systems. Finally, we demonstrate a simple approach to quantifying the maximum actuation strain through measurement of the soft elastic plateau and demonstrate applications of nematic LCEs with low TODT s, including the first body-responsive LCE that curls around a human finger due to body heat, and a fluidic channel that directionally pumps liquid when heated.- Published
- 2022
- Full Text
- View/download PDF
3. Understanding interfacial segregation in polymer blend films with random and mixed side chain bottlebrush copolymer additives.
- Author
-
Mei H, Mahalik JP, Lee D, Laws TS, Terlier T, Stein GE, Kumar R, and Verduzco R
- Abstract
Bottlebrush polymers are complex macromolecules with tunable physical properties dependent on the chemistry and architecture of both the side chains and the backbone. Prior work has demonstrated that bottlebrush polymer additives can be used to control the interfacial properties of blends with linear polymers but has not specifically addressed the effects of bottlebrush side chain microstructures. Here, using a combination of experiments and self-consistent field theory (SCFT) simulations, we investigated the effects of side chain microstructures by comparing the segregation of bottlebrush additives having random copolymer side chains with bottlebrush additives having a mixture of two different homopolymer side chain chemistries. Specifically, we synthesized bottlebrush polymers with either poly(styrene- ran -methyl methacrylate) side chains or with a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA) side chains. The bottlebrush additives were matched in terms of PS and PMMA compositions, and they were blended with linear PS or PMMA chains that ranged in length from shorter to longer than the bottlebrush side chains. Experiments revealed similar behaviors of the two types of bottlebrushes, with a slight preference for mixed side-chain bottlebrushes at the film surface. SCFT simulations were qualitatively consistent with experimental observations, predicting only slight differences in the segregation of bottlebrush additives driven by side chain microstructures. Specifically, these slight differences were driven by the chemistries of the bottlebrush polymer joints and side chain end-groups, which were entropically repelled and attracted to interfaces, respectively. Using SCFT, we also demonstrated that the interfacial behaviors were dominated by entropic effects with high molecular weight linear polymers, leading to enrichment of bottlebrush near interfaces. Surprisingly, the SCFT simulations showed that the chemistry of the joints connecting the bottlebrush backbones and side chains played a more significant role compared with the side chain end groups in affecting differences in surface excess of bottlebrushes with random and mixed side chains. This work provides new insights into the effects of side chain microstructure on segregation of bottlebrush polymer additives.
- Published
- 2021
- Full Text
- View/download PDF
4. Direct shape programming of liquid crystal elastomers.
- Author
-
Barnes M and Verduzco R
- Abstract
Liquid crystal elastomers (LCEs) are shape morphing materials promising for many applications including soft robotics, actuators, and biomedical devices, but current LCE synthesis techniques lack a simple method to program new and arbitrary shape changes. Here, we demonstrate a straightforward method to directly program complex, reversible, non-planar shape changes in nematic LCEs. We utilize a double network synthesis process that results in a competitive double network LCE. By optimizing the crosslink densities of the first and second network we can mechanically program non-planar shapes with strains between 4-100%. This enables us to directly program LCEs using mechanical deformations that impart low or high strains in the LCE including stamping, curling, stretching and embossing methods. The resulting LCEs reversibly shape-shift between the initial and programmed shape. This work widens the potential application of LCEs in biomedical devices, soft-robotics and micro-fluidics where arbitrary and easily programmed shapes are needed.
- Published
- 2019
- Full Text
- View/download PDF
5. Swelling responses of surface-attached bottlebrush polymer networks.
- Author
-
Mah AH, Mei H, Basu P, Laws TS, Ruchhoeft P, Verduzco R, and Stein GE
- Abstract
The swelling responses of thin polymer networks were examined as a function of primary polymer architecture. Thin films of linear or bottlebrush polystyrene were cast on polystyrene-grafted substrates, and surface-attached networks were prepared with a radiation crosslinking reaction. The dry and equilibrated swollen thicknesses were both determined with spectroscopic ellipsometry. The dry thickness, which reflects the insoluble fraction of the film after crosslinking, depends on the primary polymer size and radiation dose but is largely independent of primary polymer architecture. When networks are synthesized with a high radiation dose, producing a high density of crosslinks, the extent of swelling is similar for all primary polymer architectures and molecular weights. However, when networks are synthesized with a low radiation dose, the extent of swelling is reduced as the primary polymer becomes larger or increasingly branched. These trends are consistent with a simple Flory model for equilibrium swelling that describes the effects of branch junctions and radiation crosslinks on network elasticity.
- Published
- 2018
- Full Text
- View/download PDF
6. Liquid crystal elastomers: emerging trends and applications.
- Author
-
White T and Verduzco R
- Published
- 2017
- Full Text
- View/download PDF
7. Lamellar and liquid crystal ordering in solvent-annealed all-conjugated block copolymers.
- Author
-
Lin YH, Yager KG, Stewart B, and Verduzco R
- Abstract
All-conjugated block copolymers are an emerging class of polymeric materials promising for organic electronic applications, but further progress requires a better understanding of their microstructure including crystallinity and self-assembly through micro-phase segregation. Here, we demonstrate remarkable changes in the thin film structure of a model series of all-conjugated block copolymers with varying processing conditions. Under thermal annealing, poly(3-hexylthiophene)-b-poly(9',9'-dioctylfluorene) (P3HT-b-PF) all-conjugated block copolymers exhibit crystalline features of P3HT or PF, depending on the block ratio, and poor π-π stacking. Under chloroform solvent annealing, the block copolymers exhibit lamellar ordering, as evidenced by multiple reflections in grazing incidence wide- and small-angle X-ray scattering (GIWAXS and GISAXS), including an in-plane reflection indicative of order along the π-π stacking direction for both P3HT and PF blocks. The lamellae have a characteristic domain size of 4.2 nm, and this domain size is found to be independent of block copolymer molecular weight and block ratio. This suggests that lamellar self-assembly arises due to a combination of polymer block segregation and π-π stacking of both P3HT and PF polymer blocks. Strategies for predicting the microstructure of all-conjugated block copolymers must take into account intermolecular π-π stacking and liquid crystalline interactions not typically found in flexible coil block copolymers.
- Published
- 2014
- Full Text
- View/download PDF
8. Thermoresponsive PNIPAAM bottlebrush polymers with tailored side-chain length and end-group structure.
- Author
-
Li X, ShamsiJazeyi H, Pesek SL, Agrawal A, Hammouda B, and Verduzco R
- Subjects
- Chloroform chemistry, Phase Transition, Scattering, Small Angle, Solubility, Temperature, Water chemistry, Acrylic Resins chemistry, Polymers chemistry, Solutions chemistry
- Abstract
We explore the phase behaviour, solution conformation, and interfacial properties of bottlebrush polymers with side-chains comprised of poly(N-isopropylacrylamide) (PNIPAAM), a thermally responsive polymer that exhibits a lower critical solution temperature (LCST) in water. PNIPAAM bottlebrush polymers with controlled side-chain length and side-chain end-group structure are prepared using a "grafting-through" technique. Due to reduced flexibility of bottlebrush polymer side-chains, side-chain end-groups have a disproportionate effect on bottlebrush polymer solubility and phase behaviour. Bottlebrush polymers with a hydrophobic end-group have poor water solubilities and depressed LCSTs, whereas bottlebrush polymers with thiol-terminated side-chains are fully water-soluble and exhibit an LCST greater than that of PNIPAAM homopolymers. The temperature-dependent solution conformation of PNIPAAM bottlebrush polymers in D2O is analyzed by small-angle neutron scattering (SANS), and data analysis using the Guinier-Porod model shows that the bottlebrush polymer radius decreases as the temperature increases towards the LCST for PNIPAAM bottlebrush polymers with relatively long 9 kg mol(-1) side-chains. Above the LCST, PNIPAAM bottlebrush polymers can form a lyotropic liquid crystal phase in water. Interfacial tension measurements show that bottlebrush polymers reduce the interfacial tension between chloroform and water to levels comparable to PNIPAAM homopolymers without the formation of microemulsions, suggesting that bottlebrush polymers are unable to stabilize highly curved interfaces. These results demonstrate that bottlebrush polymer side-chain length and flexibility impact phase behavior, solubility, and interfacial properties.
- Published
- 2014
- Full Text
- View/download PDF
9. Shape-responsive liquid crystal elastomer bilayers.
- Author
-
Agrawal A, Yun T, Pesek SL, Chapman WG, and Verduzco R
- Abstract
Monodomain liquid crystal elastomers (LCEs) are shape-responsive materials, but shape changes are typically limited to simple uniaxial extensions or contractions. Here, we demonstrate that complex surface patterns and shape changes, including patterned wrinkles, helical twisting, and reversible folding, can be achieved in LCE-polystyrene (PS) bilayers. LCE-PS bilayer shape changes are achieved in response to simple temperature changes and can be controlled through various material parameters including overall aspect ratio and LCE and polystyrene film thicknesses. Deposition of a patterned PS film on top of an LCE enables the preparation of an elastomer that reversibly twists and a folding leaf-like elastomer, which opens and closes in response to temperature changes. The phenomena are captured through finite element simulations, in quantitative agreement with experiments.
- Published
- 2014
- Full Text
- View/download PDF
10. Director dynamics in liquid-crystal physical gels.
- Author
-
Verduzco R, Scruggs NR, Sprunt S, Palffy-Muhoray P, and Kornfield JA
- Abstract
Nematic liquid-crystal (LC) elastomers and gels have a rubbery polymer network coupled to the nematic director. While LC elastomers show a single, non-hydrodynamic relaxation mode, dynamic light-scattering studies of self-assembled liquid-crystal gels reveal orientational fluctuations that relax over a broad time scale. At short times, the relaxation dynamics exhibit hydrodynamic behavior. In contrast, the relaxation dynamics at long times are non-hydrodynamic, highly anisotropic, and increase in amplitude at small scattering angles. We argue that the slower dynamics arise from coupling between the director and the physically associated network, which prevents director orientational fluctuations from decaying completely at short times. At long enough times the network restructures, allowing the orientational fluctuations to fully decay. Director dynamics in the self-assembled gels are thus quite distinct from those observed in LC elastomers in two respects: they display soft orientational fluctuations at short times, and they exhibit at least two qualitatively distinct relaxation processes.
- Published
- 2007
- Full Text
- View/download PDF
11. Rheological study of structural transitions in triblock copolymers in a liquid crystal solvent.
- Author
-
Kempe MD, Verduzco R, Scruggs NR, and Kornfield JA
- Abstract
Rheological properties of triblock copolymers dissolved in a nematic liquid crystal (LC) solvent demonstrate that their microphase separated structure is heavily influenced by changes in LC order. Nematic gels were created by swelling a well-defined, high molecular weight ABA block copolymer with the small-molecule nematic LC solvent 4-pentyl-4'-cyanobiphenyl (5CB). The "B" midblock is a side-group liquid crystal polymer (SGLCP) designed to be soluble in 5CB and the "A" endblocks are polystyrene, which is LC-phobic and microphase separates to produce a physically cross-linked, thermoreversible, macroscopic polymer network. At sufficiently low polymer concentration a plateau modulus in the nematic phase, characteristic of a gel, abruptly transitions to terminal behavior when the gel is heated into its isotropic phase. In more concentrated gels, endblock aggregates persist into the isotopic phase. Dramatic changes in network structure are observed over small temperature windows (as little as 1 °C) due to tccche rapidly changing LC order near the isotropization point. The discontinuous change in solvent quality produces an abrupt change in viscoelastic properties for three polymers having different pendant mesogenic groups and matched block lengths.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.