1. Fabry-Pérot Interferometer Based Imaging Spectrometer for Fe I Line Observation and Line-of-Sight Velocity Measurement.
- Author
-
Hu, Xingcheng, Yang, Jinsheng, Rao, Xuejun, Tong, Dingkang, Yao, Jiawen, Du, Zhimao, Lin, Qing, and Rao, Changhui
- Subjects
HIGH resolution imaging ,SOLAR telescopes ,SPECTRAL imaging ,SOLAR surface ,VELOCITY measurements - Abstract
High spectral resolution imaging spectroscopy plays a crucial role in solar observation, regularly serving as a backend instrument for solar telescopes. These instruments find direct application in deriving Doppler velocity from hyperspectral images, offering insights into the dynamic motion of matter on the solar surface. In this study, we present the development of a Fabry–Pérot interferometer (FPI) based imaging spectrometer operating at the Fe I (617.3 nm) wavelength for precise Doppler velocity measurements. The spectrometer features a moderate spectral resolution of λ / Δ λ ≈ 60 , 000 , aiming to balance the imaging signal-to-noise ratio (SNR). The instrument underwent successful observational experiments on the 65-cm Educational Adaptive-Optics Solar Telescope (EAST) at the Shanghai Astronomy Museum. Obtained Doppler velocities were compared with data from the Helioseismic and Magnetic Imager (HMI), the maximum column and row correlation coefficients are 0.9261 and 0.9603, respectively. The estimated cut-off normalized frequency of the power spectral density (PSD) curve for velocity map is approximately 0.4/0.21 times higher than that observed in the HMI data, with potentially higher spatial resolution achievable under better seeing conditions. Based on the estimated imaging SNR levels, the accuracy of velocity measurements is approximately 50 m s
−1 . [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF