1. Therapeutic effects of Stemmoside C against Salmonella enterica serotype typhimurium infected BALB/c mice.
- Author
-
El-Shiekh RA and Elshimy R
- Subjects
- Animals, Humans, Mice, Cytokines, Mice, Inbred BALB C, Pregnanes pharmacology, Pregnanes therapeutic use, Serogroup, Anti-Bacterial Agents pharmacology, Anti-Bacterial Agents therapeutic use, Salmonella enterica, Salmonella typhimurium, Glycosides pharmacology, Glycosides therapeutic use, Steroids pharmacology, Steroids therapeutic use
- Abstract
Salmonella is a Gram-negative bacterium that causes gastrointestinal diseases in 20 to 40 million people globally. Stemmoside C is a steroidal glycoside isolated from Argel, although its antibacterial and antibiofilm properties have not been studied. The antibacterial activity of Stemmoside C against Salmonella enterica was revealed, where MIC of the compound was 16 μg/mL (0.15 µM). Biofilm-associated Stemmoside C treatment destroyed S. typhi cells and reduced viable S. typhi numbers below detectable levels. When compared to Stemmoside C or Ciprofluxacin-treated mice, infected BALB/c mice had a greater death rate and a larger bacterial blood burden. The protective effects of orally administered Stemmoside C at dose of 25 and 50 mg/kg b.wt. against bacterial infection was associated with reduction in the levels of inflammatory cytokines (IFN-γ, Il-1β, IL-2, IL-6, MPO, and TNF-α) and elevation of anti-inflammatory cytokine (IL-10 and IL-12) in serum. Where, Stemmoside C at dose of 50 mg/kg b.wt. regulated the levels almost as normal control group and demonstrated apparently normal intestinal sections. It also resulted in a decrease in the number of viable S. typhi retrieved from feces. Stemmoside C is a promising drug for the treatment or prevention of S. typhimurium infection., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF