1. Total Roman {3}-domination in Graphs
- Author
-
Zehui Shao, Doost Ali Mojdeh, and Lutz Volkmann
- Subjects
roman domination ,roman {3}-domination ,total roman {3}-domination ,Mathematics ,QA1-939 - Abstract
For a graph G = ( V , E ) with vertex set V = V ( G ) and edge set E = E ( G ) , a Roman { 3 } -dominating function (R { 3 } -DF) is a function f : V ( G ) → { 0 , 1 , 2 , 3 } having the property that ∑ u ∈ N G ( v ) f ( u ) ≥ 3 , if f ( v ) = 0 , and ∑ u ∈ N G ( v ) f ( u ) ≥ 2 , if f ( v ) = 1 for any vertex v ∈ V ( G ) . The weight of a Roman { 3 } -dominating function f is the sum f ( V ) = ∑ v ∈ V ( G ) f ( v ) and the minimum weight of a Roman { 3 } -dominating function on G is the Roman { 3 } -domination number of G, denoted by γ { R 3 } ( G ) . Let G be a graph with no isolated vertices. The total Roman { 3 } -dominating function on G is an R { 3 } -DF f on G with the additional property that every vertex v ∈ V with f ( v ) ≠ 0 has a neighbor w with f ( w ) ≠ 0 . The minimum weight of a total Roman { 3 } -dominating function on G, is called the total Roman { 3 } -domination number denoted by γ t { R 3 } ( G ) . We initiate the study of total Roman { 3 } -domination and show its relationship to other domination parameters. We present an upper bound on the total Roman { 3 } -domination number of a connected graph G in terms of the order of G and characterize the graphs attaining this bound. Finally, we investigate the complexity of total Roman { 3 } -domination for bipartite graphs.
- Published
- 2020
- Full Text
- View/download PDF