1. Paper-based synthesis of Prussian Blue Nanoparticles for the development of whole blood glucose electrochemical biosensor
- Author
-
Danila Moscone, Fabiana Arduini, Roberto Cusenza, Stefano Cinti, Cinti, S., Cusenza, R., Moscone, D., and Arduini, F.
- Subjects
Blood Glucose ,Paper ,Surface Properties ,Reducing agent ,Paper-based ,Electrode ,Surface Propertie ,Nanoparticle ,Nanotechnology ,Biosensing Techniques ,02 engineering and technology ,01 natural sciences ,Analytical Chemistry ,Biosensing Technique ,chemistry.chemical_compound ,Settore CHIM/01 - Chimica Analitica ,Glucose oxidase ,Particle Size ,Hydrogen peroxide ,Electrodes ,Prussian blue ,Electrochemical Technique ,biology ,Filter paper ,010401 analytical chemistry ,Electrochemical Techniques ,Hydrogen-Ion Concentration ,021001 nanoscience & nanotechnology ,BiosensorPaper-basedPoint-of-carePrussian Blue NanoparticlesScreen-printed electrodesWhole blood ,Environmentally friendly ,0104 chemical sciences ,Whole blood ,Prussian Blue Nanoparticle ,chemistry ,Point-of-care ,Screen-printed electrode ,biology.protein ,Nanoparticles ,0210 nano-technology ,Biosensor ,Ferrocyanide ,Ferrocyanides - Abstract
Nowadays, environmentally friendly synthesis pathways for preserving the environment and minimizing waste are strongly required. Herein, we propose filter paper as a convenient scaffold for chemical reactions. To demonstrate this novel approach, Prussian Blue Nanoparticles (PBNPs) were synthesized on filter paper by utilizing few μL of its precursors without external inputs, i.e. pH, voltage, reducing agents, and without producing waste as well. The functional paper, named “Paper Blue”, is successfully applied in the sensing field, exploiting the reduction of hydrogen peroxide at low applied potential. The eco-designed “Paper Blue” was combined with wax- and screen-printing to manufacture a reagentless electrochemical point-of-care device for diabetes self-monitoring, by using glucose oxidase as the biological recognition element. Blood glucose was linearly detected for a wide concentration range up to 25 mM (450 mg/dL), demonstrating its suitability for management of diabetes and glucose-related diseases. The Paper Blue-based biosensor demonstrated a correlation coefficient of 0.987 with commercial glucose strips (Bayer Contour XT). The achieved results demonstrated the effectiveness of this approach, which is also extendible to other (bio)systems to be applied in catalysis, remediation, and diagnostics.
- Published
- 2018
- Full Text
- View/download PDF