Lidia Martínez, Christine Joblin, Mario Accolla, Gonzalo Santoro, José A. Martín-Gago, Pablo Merino, Jesús Manuel Sobrado, Hassan Sabbah, Guillermo Tajuelo-Castilla, Alvaro Mayoral, Koen Lauwaet, Ramón J. Peláez, José Cernicharo, Marcelino Agúndez, Víctor J. Herrero, Isabel Tanarro, Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), IMDEA Nanociencia (IMDEA), Instituto de Física Fundamental [Madrid] (IFF), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Instituto de Estructura de la Materia (IEM), ShanghaiTech University [Shanghai], Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Santorio, G. [0000-0003-4751-2209], Accolla, M. [0000-0002-9509-5967], Agúndez, M. [0000-0003-3248-3564], Sabbah, H. [0000-0001-5722-4388], Joblin, C. [0000-0003-1561-6118], Cernicharo, J. [0000-0002-3518-2524], Martín Gago, J. M. [0000-0003-2663-491X], European Commission (EC), Ministerio de Ciencia e Innovación (MICINN), Comunidad de Madrid, Ministerio de Economía y Competitividad (MINECO), European Commission, Ministerio de Ciencia, Innovación y Universidades (España), Ministerio de Economía y Competitividad (España), Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737, Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
13 pags., 12 figs., 2 tabs., Interstellar carbonaceous dust is mainly formed in the innermost regions of circumstellar envelopes around carbon-rich asymptotic giant branch stars (AGBs). In these highly chemically stratified regions, atomic and diatomic carbon, along with acetylene, are the most abundant species after H and CO. In a previous study, we addressed the chemistry of carbon (C and C) with H showing that acetylene and aliphatic species form efficiently in the dust formation region of carbon-rich AGBs whereas aromatics do not. Still, acetylene is known to be a key ingredient in the formation of linear polyacetylenic chains, benzene, and polycyclic aromatic hydrocarbons (PAHs), as shown by previous experiments. However, these experiments have not considered the chemistry of carbon (C and C) with CH. In this work, by employing a sufficient amount of acetylene, we investigate its gas-phase interaction with atomic and diatomic carbon. We show that the chemistry involved produces linear polyacetylenic chains, benzene, and other PAHs, which are observed with high abundances in the early evolutionary phase of planetary nebulae. More importantly, we have found a nonnegligible amount of pure and hydrogenated carbon clusters as well as aromatics with aliphatic substitutions, both being a direct consequence of the addition of atomic carbon. The incorporation of alkyl substituents into aromatics can be rationalized by a mechanism involving hydrogen abstraction followed by methyl addition. All the species detected in the gas phase are incorporated into nanometric-sized dust analogs, which consist of a complex mixture of sp, sp, and sp hydrocarbons with amorphous morphology., We thank the European Research Council for funding support under Synergy grant ERC-2013-SyG, G.A. 610256 (NANOCOSMOS). Also, partial support from the Spanish Research Agency (AEI) through grants MAT2017-85089-c2- 1R, FIS2016-77578-R, FIS2016-77726-C3-1-P, AYA2016- 75066-C2-1-P, and RyC-2014-16277 is acknowledged. Support from the FotoArt-CM Project (P2018/NMT 4367) through the Program of R&D activities between research groups in Technologies 2013, co-financed by European Structural Funds, is also acknowledged. G.TC. acknowledges funding from the Comunidad Autónoma de Madrid (PEJD-2018-PRE/ IND-9029)