1. The Galactic Nova Rate: Estimates from the ASAS-SN and Gaia Surveys
- Author
-
A. Kawash, L. Chomiuk, J. Strader, K. V. Sokolovsky, E. Aydi, C. S. Kochanek, K. Z. Stanek, Z. Kostrzewa-Rutkowska, S. T. Hodgkin, K. Mukai, B. Shappee, T. Jayasinghe, M. Rizzo Smith, T. W.-S. Holoien, J. L. Prieto, and T. A. Thompson
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,White Dwarf Stars ,FOS: Physical sciences ,Cataclysmic Variable Stars ,Astronomy and Astrophysics ,Classical Novae ,Astrophysics - Astrophysics of Galaxies ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Astrophysics of Galaxies (astro-ph.GA) ,Astrophysics - High Energy Astrophysical Phenomena ,Novae ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
We present the first estimate of the Galactic nova rate based on optical transient surveys covering the entire sky. Using data from the All-Sky Automated Survey for Supernovae (ASAS-SN) and \textit{Gaia} -- the only two all-sky surveys to report classical nova candidates -- we find 39 confirmed Galactic novae and 7 additional unconfirmed candidates discovered from 2019--2021, yielding a nova discovery rate of $\approx 14$ yr$^{-1}$. Using accurate Galactic stellar mass models, three-dimensional dust maps, and incorporating realistic nova light curves, we have built a sophisticated Galactic nova model that allows an estimate of the recovery fraction of Galactic novae from these surveys over this time period. The observing capabilities of each survey are distinct: the high cadence of ASAS-SN makes it sensitive to fast novae, while the broad observing filter and high spatial resolution of \textit{Gaia} make it more sensitive to highly reddened novae across the entire Galactic plane and bulge. Despite these differences, we find that ASAS-SN and \textit{Gaia} give consistent Galactic nova rates, with a final joint nova rate of $26 \pm 5$ yr$^{-1}$. This inferred nova rate is substantially lower than found by many other recent studies. Critically assessing the systematic uncertainties in the Galactic nova rate, we argue that the role of faint fast-fading novae has likely been overestimated, but that subtle details in the operation of transient alert pipelines can have large, sometimes unappreciated effects on transient recovery efficiency. Our predicted nova rate can be directly tested with forthcoming red/near-infrared transient surveys in the southern hemisphere., 24 pages, 9 figures
- Published
- 2022
- Full Text
- View/download PDF