1. Multinomial Logistic Model for Coinfection Diagnosis Between Arbovirus and Malaria in Kedougou
- Author
-
Abdourahmane Sow, Cheikh Loucoubar, Elisabeth Gassiat, Amadou A. Sall, Mor Absa Loum, Marie-Anne Poursat, Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Statistique mathématique et apprentissage (CELESTE), Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Arbovirus et Virus de Fièvres Hémorragiques [Dakar, Sénégal], Institut Pasteur de Dakar, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP), Biostatistique, Bio-informatique et Modélisation - Biostatistics, Bioinformatics and Modelling Group [Dakar], Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Réseau International des Instituts Pasteur (RIIP), Laboratoire de Mathématiques d'Orsay (LM-Orsay), and Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
- Subjects
FOS: Computer and information sciences ,Male ,Plasmodium ,Databases, Factual ,Multinomial logistic model ,Disease ,Antibodies, Viral ,01 natural sciences ,0302 clinical medicine ,[STAT.ML]Statistics [stat]/Machine Learning [stat.ML] ,Statistics - Machine Learning ,[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST] ,Multinomial logistic regression ,[STAT.AP]Statistics [stat]/Applications [stat.AP] ,Endemic area ,General Medicine ,Senegal ,3. Good health ,[STAT]Statistics [stat] ,Coinfection ,Female ,Statistics, Probability and Uncertainty ,[STAT.ME]Statistics [stat]/Methodology [stat.ME] ,variable selection ,Statistics and Probability ,Arboviral disease ,030231 tropical medicine ,malaria ,Machine Learning (stat.ML) ,Mathematics - Statistics Theory ,Statistics Theory (math.ST) ,Arbovirus Infections ,Biostatistics ,Statistics - Applications ,Arbovirus ,03 medical and health sciences ,random forest classification ,Predictive Value of Tests ,0103 physical sciences ,FOS: Mathematics ,medicine ,Humans ,Applications (stat.AP) ,Computer Simulation ,010306 general physics ,business.industry ,variableselection ,medicine.disease ,coinfection ,Logistic Models ,arbovirus ,Immunoglobulin M ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,business ,multinomial logistic regression ,Malaria ,Demography - Abstract
In tropical regions, populations continue to suffer morbidity and mortality from malaria and arboviral diseases. In Kedougou (Senegal), these illnesses are all endemic due to the climate and its geographical position. The co-circulation of malaria parasites and arboviruses can explain the observation of coinfected cases. Indeed there is strong resemblance in symptoms between these diseases making problematic targeted medical care of coinfected cases. This is due to the fact that the origin of illness is not obviously known. Some cases could be immunized against one or the other of the pathogens, immunity typically acquired with factors like age and exposure as usual for endemic area. Thus, coinfection needs to be better diagnosed. Using data collected from patients in Kedougou region, from 2009 to 2013, we adjusted a multinomial logistic model and selected relevant variables in explaining coinfection status. We observed specific sets of variables explaining each of the diseases exclusively and the coinfection. We tested the independence between arboviral and malaria infections and derived coinfection probabilities from the model fitting. In case of a coinfection probability greater than a threshold value to be calibrated on the data, long duration of illness and age are mostly indicative of arboviral disease while high body temperature and presence of nausea or vomiting symptoms during the rainy season are mostly indicative of malaria disease.
- Published
- 2019