1. Spectroscopic and Theoretical Study of the Grafting Modes of Phosphonic Acids on ZnO Nanorods
- Author
-
Maria Elena Fragalà, Alessandro Motta, Yana Aleeva, Guglielmo G. Condorelli, Emanuele Smecca, Smecca, E, Motta, A, Fragalà, M, Aleeva, Y, and Condorelli, G
- Subjects
Materials science ,Nanostructure ,OXIDE SURFACES ,Nanoparticle ,Metal ,chemistry.chemical_compound ,SELF-ASSEMBLED MONOLAYERS ,NANOPARTICLES ,Organic chemistry ,RAY PHOTOELECTRON-SPECTROSCOPY ,POLARIZABLE CONTINUUM MODEL ,MOLECULAR-ORBITAL METHODS ,SENSITIZED SOLAR-CELLS ,SURFACE FUNCTIONALIZATION ,ZINC-OXIDE ,ALUMINUM ,Physical and Theoretical Chemistry ,Bifunctional ,Self-assembled monolayer ,Combinatorial chemistry ,Surfaces, Coatings and Films ,Electronic, Optical and Magnetic Materials ,General Energy ,chemistry ,visual_art ,visual_art.visual_art_medium ,Surface modification ,Nanorod ,Biosensor - Abstract
Metal oxides are versatile substrates for the design of a wide range of SAM-based organic-inorganic materials among which ZnO nanostructures modified with phosphonic SAM are promising semiconducting systems for applications in technological fields such as biosensing, photonics, and field-effect transistors (FET). Despite previous studies reported on various successful grafting approaches, issues regarding preferred anchoring modes of phosphonic acids and the role of a second reactive group (i.e., a carboxylic group) are still a matter of controversial interpretations. This paper reports on an experimental and theoretical study on the functionalization of ZnO nanorods with monofunctional alkylphosphonic and bifunctional carboxyalkylphosphonic acids. X-ray photoelectron and infrared spectroscopies have been combined with DFT modeling to explain and understand the interactions that drive the surface anchoring of phosphonic acids on ZnO surface. It was found that both monofunctional and bifunctional acids anchor on ZnO through a multidentate bonding which involves both P=O and P-O moieties of the phosphonic group. Moreover, anchored bifunctional acids bend to the surface, promoting a further interaction between surface hydroxyl groups and carboxylic terminations. This secondary interaction can be limited by increasing the surface density of the anchored molecules.
- Published
- 2013
- Full Text
- View/download PDF