The response of chinchilla basilar membrane in the basal region of the cochlea to multicomponent (1, 3, 5, 6, or 7) stimuli was studied using a laser interferometer. Three-component stimuli were amplitude-modulated signals with modulation depths that varied from 25% to 200% and the modulation frequency varied from 100 to 2000 Hz while the carrier frequency was set to the characteristic frequency of the region under study (approximately 6.3 to 9 kHz). Results indicate that, for certain modulation frequencies and depths, there is enhancement of the response. Responses to five equal-amplitude sine wave stimuli indicated the occurrence of nonlinear phenomena such as spectral edge enhancement, present when the frequency spacing was less than 200 Hz, and mutual suppression. For five-component stimuli, the first, third, or fifth component was placed at the characteristic frequency and the component frequency separation was varied over a 2-kHz range. Responses to seven component stimuli were similar to those of five-component stimuli. Six-component stimuli were generated by leaving out the center component of the seven-component stimuli. In the latter case, the center component was restored in the basilar-membrane response as a result of distortion-product generation in the nonlinear cochlea.