1. Flavorings-Related Lung Disease: A Brief Review and New Mechanistic Data.
- Author
-
Hubbs AF, Kreiss K, Cummings KJ, Fluharty KL, O'Connell R, Cole A, Dodd TM, Clingerman SM, Flesher JR, Lee R, Pagel S, Battelli LA, Cumpston A, Jackson M, Kashon M, Orandle MS, Fedan JS, and Sriram K
- Subjects
- Acetoin toxicity, Air Pollutants, Occupational chemistry, Bronchiolitis Obliterans pathology, Diacetyl toxicity, Flavoring Agents chemistry, Humans, Inhalation Exposure adverse effects, Lung Diseases pathology, Occupational Diseases pathology, Occupational Exposure adverse effects, Pentanones toxicity, Air Pollutants, Occupational toxicity, Bronchiolitis Obliterans chemically induced, Flavoring Agents toxicity, Lung Diseases chemically induced, Occupational Diseases chemically induced
- Abstract
Flavorings-related lung disease is a potentially disabling and sometimes fatal lung disease of workers making or using flavorings. First identified almost 20 years ago in microwave popcorn workers exposed to butter-flavoring vapors, flavorings-related lung disease remains a concern today. In some cases, workers develop bronchiolitis obliterans, a severe form of fixed airways disease. Affected workers have been reported in microwave popcorn, flavorings, and coffee production workplaces. Volatile α-dicarbonyl compounds, particularly diacetyl (2,3-butanedione) and 2,3-pentanedione, are implicated in the etiology. Published studies on diacetyl and 2,3-pentanedione document their ability to cause airway epithelial necrosis, damage biological molecules, and perturb protein homeostasis. With chronic exposure in rats, they produce airway fibrosis resembling bronchiolitis obliterans. To add to this knowledge, we recently evaluated airway toxicity of the 3-carbon α-dicarbonyl compound, methylglyoxal. Methylglyoxal inhalation causes epithelial necrosis at even lower concentrations than diacetyl. In addition, we investigated airway toxicity of mixtures of diacetyl, acetoin, and acetic acid, common volatiles in butter flavoring. At ratios comparable to workplace scenarios, the mixtures or diacetyl alone, but not acetic acid or acetoin, cause airway epithelial necrosis. These new findings add to existing data to implicate α-dicarbonyl compounds in airway injury and flavorings-related lung disease.
- Published
- 2019
- Full Text
- View/download PDF