1. Derivation alternator rings with idempotent
- Author
-
Irvin Roy Hentzel and Harry F. Smith
- Subjects
Pure mathematics ,Ring (mathematics) ,law ,Simple (abstract algebra) ,Applied Mathematics ,General Mathematics ,Semiprime ,Idempotence ,Boolean ring ,Alternator ,Prime (order theory) ,law.invention ,Mathematics - Abstract
A nonassociative ring is called a derivation alternator ring if it satisfies the identities ( y z , x , x ) = y ( z , x , x ) + ( y , x , x ) z , ( x , x , y z ) = y ( x , x , z ) + ( x , x , y ) z (yz,\,x,\,x)\, = \,y(z,\,x,\,x)\, + \,(y,\,x,\,x)z,\,(x,\,x,\,yz)\, = \,y(x,\,x,\,z)\, + \,(x,\,x,\,y)z and ( x , x , x ) = 0 (x,\,x,\,x)\, = 0 . Let R be a prime derivation alternator ring with idempotent e ≠ 1 e \ne 1 and characteristic ≠ 2 \ne 2 . If R is without nonzero nil ideals of index 2, then R is alternative.
- Published
- 1980
- Full Text
- View/download PDF