1. Electronic health record surveillance algorithms facilitate the detection of transfusion‐related pulmonary complications
- Author
-
Clifford, Leanne, Singh, Amandeep, Wilson, Gregory A, Toy, Pearl, Gajic, Ognjen, Malinchoc, Michael, Herasevich, Vitaly, Pathak, Jyotishman, and Kor, Daryl J
- Subjects
Rare Diseases ,Lung ,Acute Respiratory Distress Syndrome ,Clinical Research ,Aetiology ,2.4 Surveillance and distribution ,Detection ,screening and diagnosis ,4.2 Evaluation of markers and technologies ,Respiratory ,Good Health and Well Being ,Acute Lung Injury ,Aged ,Algorithms ,Blood Gas Analysis ,Blood Group Incompatibility ,Electronic Health Records ,Female ,Humans ,Hypoxia ,Longitudinal Studies ,Male ,Middle Aged ,Multivariate Analysis ,Population Surveillance ,Pulmonary Edema ,Respiratory Rate ,Retrospective Studies ,Risk Factors ,Sensitivity and Specificity ,Cardiorespiratory Medicine and Haematology ,Clinical Sciences ,Immunology ,Cardiovascular System & Hematology - Abstract
BackgroundTransfusion-related acute lung injury (TRALI) and transfusion-associated circulatory overload (TACO) are leading causes of transfusion-related mortality. Notably, poor syndrome recognition and underreporting likely result in an underestimate of their true attributable burden. We aimed to develop accurate electronic health record-based screening algorithms for improved detection of TRALI/transfused acute lung injury (ALI) and TACO.Study design and methodsThis was a retrospective observational study. The study cohort, identified from a previous National Institutes of Health-sponsored prospective investigation, included 223 transfused patients with TRALI, transfused ALI, TACO, or complication-free controls. Optimal case detection algorithms were identified using classification and regression tree (CART) analyses. Algorithm performance was evaluated with sensitivities, specificities, likelihood ratios, and overall misclassification rates.ResultsFor TRALI/transfused ALI detection, CART analysis achieved a sensitivity and specificity of 83.9% (95% confidence interval [CI], 74.4%-90.4%) and 89.7% (95% CI, 80.3%-95.2%), respectively. For TACO, the sensitivity and specificity were 86.5% (95% CI, 73.6%-94.0%) and 92.3% (95% CI, 83.4%-96.8%), respectively. Reduced PaO2 /FiO2 ratios and the acquisition of posttransfusion chest radiographs were the primary determinants of case versus control status for both syndromes. Of true-positive cases identified using the screening algorithms (TRALI/transfused ALI, n = 78; TACO, n = 45), only 11 (14.1%) and five (11.1%) were reported to the blood bank by physicians, respectively.ConclusionsElectronic screening algorithms have shown good sensitivity and specificity for identifying patients with TRALI/transfused ALI and TACO at our institution. This supports the notion that active electronic surveillance may improve case identification, thereby providing a more accurate understanding of TRALI/transfused ALI and TACO epidemiology.
- Published
- 2013