1. Age and Primary Vaccination Background Influence the Plasma Cell Response to Pertussis Booster Vaccination
- Author
-
Annieck M. Diks, Pauline Versteegen, Cristina Teodosio, Rick J. Groenland, Bas de Mooij, Anne-Marie Buisman, Alba Torres-Valle, Martín Pérez-Andrés, Alberto Orfao, Guy A. M. Berbers, Jacques J. M. van Dongen, Magdalena A. Berkowska, and on behalf of the IMI-2 PERISCOPE Consortium
- Subjects
Tdap ,flow cytometry ,acellular pertussis vaccine (aP) ,whole-cell pertussis vaccine (wP) ,plasma cells ,ELISpot ,Medicine - Abstract
Pertussis is a vaccine-preventable disease caused by the bacterium Bordetella pertussis. Over the past years, the incidence and mortality of pertussis increased significantly. A possible cause is the switch from whole-cell to acellular pertussis vaccines, although other factors may also contribute. Here, we applied high-dimensional flow cytometry to investigate changes in B cells in individuals of different ages and distinct priming backgrounds upon administration of an acellular pertussis booster vaccine. Participants were divided over four age cohorts. We compared longitudinal kinetics within each cohort and between the different cohorts. Changes in the B-cell compartment were correlated to numbers of vaccine-specific B- and plasma cells and serum Ig levels. Expansion and maturation of plasma cells 7 days postvaccination was the most prominent cellular change in all age groups and was most pronounced for more mature IgG1+ plasma cells. Plasma cell responses were stronger in individuals primed with whole-cell vaccine than in individuals primed with acellular vaccine. Moreover, IgG1+ and IgA1+ plasma cell expansion correlated with FHA-, Prn-, or PT- specific serum IgG or IgA levels. Our study indicates plasma cells as a potential early cellular marker of an immune response and contributes to understanding differences in immune responses between age groups and primary vaccination backgrounds.
- Published
- 2022
- Full Text
- View/download PDF