1. Computer Modeling of Diabetes and Its Transparency
- Author
-
Penny Breeze, Jose Leal, Andrew J. Palmer, Lei Si, Talitha L Feenstra, Alan Brennan, Alastair Gray, Michelle Tew, William J. Valentine, William H. Herman, Mark Lamotte, Volker Foos, James C. Gahn, Christian Asseburg, Harry J. Smolen, Xinyang Hua, Michael Brändle, Patrick J. O'Connor, Shihchen Kuo, Wen Ye, Philip Christopher McEwan, Daniel Pollard, An Tran-Duy, Michael Willis, Neda Laiteerapong, Deanna J. M. Isaman, Philip Clarke, Richard F Pollock, Real World Studies in PharmacoEpidemiology, -Genetics, -Economics and -Therapy (PEGET), and Value, Affordability and Sustainability (VALUE)
- Subjects
Research design ,Glycated Hemoglobin A ,Computer science ,030209 endocrinology & metabolism ,ECONOMIC-EVALUATION ,GUIDELINES ,Article ,Mount Hood Challenge ,Diabetes Complications ,03 medical and health sciences ,0302 clinical medicine ,Documentation ,Goodness of fit ,Credibility ,Statistics ,Diabetes Mellitus ,Humans ,Computer Simulation ,Data reporting ,computer modeling ,Glycated Hemoglobin ,transparency ,COMPLICATIONS ,diabetes ,030503 health policy & services ,Health Policy ,Public Health, Environmental and Occupational Health ,Linear model ,Reproducibility of Results ,Checklist ,Economics, Medical ,Treatment Outcome ,Research Design ,Transparency (graphic) ,Costs and Cost Analysis ,Linear Models ,Quality-Adjusted Life Years ,0305 other medical science ,HEALTH TECHNOLOGY-ASSESSMENT - Abstract
Objectives\ud The Eighth Mount Hood Challenge (held in St. Gallen, Switzerland, in September 2016) evaluated the transparency of model input documentation from two published health economics studies and developed guidelines for improving transparency in the reporting of input data underlying model-based economic analyses in diabetes.\ud \ud Methods\ud Participating modeling groups were asked to reproduce the results of two published studies using the input data described in those articles. Gaps in input data were filled with assumptions reported by the modeling groups. Goodness of fit between the results reported in the target studies and the groups’ replicated outputs was evaluated using the slope of linear regression line and the coefficient of determination (R2). After a general discussion of the results, a diabetes-specific checklist for the transparency of model input was developed.\ud \ud Results\ud Seven groups participated in the transparency challenge. The reporting of key model input parameters in the two studies, including the baseline characteristics of simulated patients, treatment effect and treatment intensification threshold assumptions, treatment effect evolution, prediction of complications and costs data, was inadequately transparent (and often missing altogether). Not surprisingly, goodness of fit was better for the study that reported its input data with more transparency. To improve the transparency in diabetes modeling, the Diabetes Modeling Input Checklist listing the minimal input data required for reproducibility in most diabetes modeling applications was developed.\ud \ud Conclusions\ud Transparency of diabetes model inputs is important to the reproducibility and credibility of simulation results. In the Eighth Mount Hood Challenge, the Diabetes Modeling Input Checklist was developed with the goal of improving the transparency of input data reporting and reproducibility of diabetes simulation model results.
- Published
- 2018