1. Disinfection by-products of metformin in the environment: A systematic toxicity evaluation on gut-liver-brain axis homeostasis and establishment of a detection method based on NiFe-LDOs/N-BC composite.
- Author
-
Wang J, Fu C, Zhang G, Chen C, Wang X, Wang Y, Liu Y, and Xiang Z
- Abstract
Metformin, a first-line drug used to treat type 2 diabetes, is not metabolised in the body and discharged into the environment in the form of prototype drugs. Compounds C (C
4 H6 ClN3 ) and Y (C4 H6 ClN5 ) are the main disinfection byproducts of metformin in urban sewage treatment; however, their potential toxicity is unclear. In this study, absorption, distribution, metabolism, elimination, and toxicity (ADMET) prediction indicated that compounds C and Y had potential hepatotoxicity and could cross the blood-brain-barrier. Toxicity verification tests indicated a sex difference in the acute toxicity of compound C, with an LD50 value of 253.269 mg kg-1 for male mice and 728.908 mg kg-1 for female mice. The subacute toxicity of compounds C and Y was evaluated to study the toxicity mechanism via the gut-liver-brain axis, which indicated that they could cause damage to the liver and brain, change the composition of the gut microbiota, and disturb the levels of metabolites in mice. Neuron-like magnetic N-doped biochar (NiFe-LDOs/N-BC) was synthesised using hydrothermal and calcination methods, and the optimised d-MSPE-HPLC-UV method was proven to be applicable for the trace detection of compound C in real water samples. The simultaneous presentation of toxicity evaluation and trace detection of compound C is intended to make the monitoring system for compound C more comprehensive., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF