1. Cost Reduction through Cell Design Optimization for Vehicle Requirements-From Active Material to Vehicle Product Portfolios
- Author
-
Matthias Tschech and Thomas Vietor
- Subjects
Battery (electricity) ,Genetic Algorithm ,Relation (database) ,Computer science ,business.industry ,Modular design ,Lithium-Ion Cell Design ,Original equipment manufacturer ,Modular Kit ,Reliability engineering ,Cost Optimization ,Cost reduction ,Automotive Engineering ,Computer data storage ,Genetic algorithm ,Vehicle Requirements ,Portfolio ,business - Abstract
The cost situation for lithium-ion batteries is one of the key limitations for the market potential of electric vehicles and has been covered by several authors from the industry and science sector. This work addresses the relation between active material properties, cell design and vehicle requirements. The results of this investigation show that the efficient use of the cell properties in the vehicle application will be decisive for the competitiveness of OEMs and battery suppliers. The center of the research is a cell model in which different active material properties, cell formats and electrode layouts can be implemented flexibly. Within a constant volume of a standardized cell housing the variation of the electrode loadings leads to relationships between the storable energy and the power of the cell. The costs determined for each specific cell design then allow describing the relation between the power to energy ratio of a cell and its energy specific costs for current and future materials. The optimal cost situation is reached when the P/E-ratio of the cell matches the required P/E-ratio of the storage system. In a broad vehicle portfolio this means a specific cell would be required for each car project. This potentially large number of cell types seems unfavorable for OEMs to handle. Therefore a genetic algorithm optimization is applied to determine the cost-optimal number and specifications of cells to address a certain vehicle portfolio. For these optimizations further restrictions such as voltage level limitations are considered as well. The tool derived from these considerations can support OEMs as well as cell &, material suppliers to find the optimal modular kit for their lithium-ion cell strategy considering individual customer requirements.
- Published
- 2015
- Full Text
- View/download PDF