11 results on '"Edgecombe GD"'
Search Results
2. The peristomatic structures as a source of systematic characters in the genus Lithobius Leach, 1814 (Myriapoda, Chilopoda).
- Author
-
Ganske AS, Edgecombe GD, and Akkari N
- Abstract
Morphological characters have been widely used in centipede systematics. Here, we aim to obtain morphological information from the preoral chamber and peristomatic structures of lithobiomorph centipedes, with taxonomic sampling focused on the species-rich genus Lithobius Leach, 1814. Towards this goal, we (i) examined the epipharynx and hypopharynx of 32 species belonging to four subgenera of the genus Lithobius , viz. Lithobius Leach, 1814, Monotarsobius Verhoeff, 1905, Sigibius Chamberlin, 1913 and Ezembius Chamberlin, 1919 using light and scanning electron microscopy, (ii) searched for phylogenetically informative characters and (iii) described interspecific variation. Three species of the lithobiid genera Eupolybothrus Verhoeff, 1907, Disphaerobius Attems, 1926 and Neolithobius Stuxberg, 1875 were additionally examined and considered as likely outgroups. New characters and character states are proposed as additions to current phylogenetic datasets. Similarities in the peristomatic structures ally Disphaerobius with Lithobius (Ezembius), suggesting that the subfamily Pterygoterginae is nested within Lithobiinae and Lithobius .
- Published
- 2018
- Full Text
- View/download PDF
3. A new cave centipede from Croatia, Eupolybothrus liburnicus sp. n., with notes on the subgenus Schizopolybothrus Verhoeff, 1934 (Chilopoda, Lithobiomorpha, Lithobiidae).
- Author
-
Akkari N, Komerički A, Weigand AM, Edgecombe GD, and Stoev P
- Abstract
A new species of Eupolybothrus Verhoeff, 1907 discovered in caves of Velebit Mountain in Croatia is described. E. liburnicus sp. n. exhibits a few morphological differences from its most similar congeners, all of which are attributed to the subgenus Schizopolybothrus Verhoeff, 1934, and two approaches to species delimitation using the COI barcode region identify it as distinct from the closely allied E. cavernicolus Stoev & Komerički, 2013. E. spiniger (Latzel, 1888) is redescribed and a lectotype is designated for it as well as E. caesar (Verhoeff, 1899) to stabilize their respective taxonomic status. The subspecies E. acherontis wardaranus Verhoeff, 1937, previously suspected to be a synonym of E. caesar (Verhoeff, 1899), is redescribed and its taxonomy revised after the study of type material whereas the identity of E. acherontis (Verhoeff, 1900) described from a female from southwest Trebinje (Bosnia and Herzegovina) remains unknown. Type material of E. stygis (Folkmanova, 1940) is confirmed to be lost and future designation of neotypes from topotypic specimens is necessary to stabilize its taxonomy. The importance of setal arrangement on the intermediate and 14
th tergites and the sexual modifications on the male 15th prefemur for species identification is discussed in the light of present findings, and a review of the species of E. (Schizopolybothrus) that display these traits is also provided.- Published
- 2017
- Full Text
- View/download PDF
4. A taxonomic review of the centipede genus Scolopendra Linnaeus, 1758 (Scolopendromorpha, Scolopendridae) in mainland Southeast Asia, with description of a new species from Laos.
- Author
-
Siriwut W, Edgecombe GD, Sutcharit C, Tongkerd P, and Panha S
- Abstract
The centipede genus Scolopendra in mainland Southeast Asia is reviewed taxonomically based on morphological characters, informed by a molecular phylogenetic analysis using sequences from three mitochondrial and nuclear genes (COI, 16S rRNA and 28S rRNA). Eight nominal species of Scolopendra, namely Scolopendra morsitans Linnaeus, 1758, Scolopendra subspinipes Leach, 1816, Scolopendra dehaani Brandt, 1840, Scolopendra multidens Newport, 1844, Scolopendra calcarata Porat, 1876, Scolopendra japonica Koch, 1878, Scolopendra pinguis Pocock, 1891, and Scolopendra dawydoffi Kronmüller, 2012, are redescribed together with some revision of type materials. Geographical variation in each species has been compiled with reference to samples that span their distribution ranges in Southeast Asia and some parts of neighbouring areas such as East Asia, the Indian Ocean, and Africa. Comparative study of traditional taxonomic characters from external morphology provides further information to distinguish some closely related species. Scolopendra cataracta Siriwut, Edgecombe & Panha, sp. n., is described from the southern part of Laos, with additional records in Thailand and Vietnam. The phylogenetic framework for Southeast Asian Scolopendra recognizes Scolopendra calcarata + Scolopendra pinguis, Scolopendra morsitans, and a Scolopendra subspinipes group that unites the other six species as the main clades. Within the Scolopendra subspinipes group, two monophyletic groups can be distinguished by having either slender or short, thick ultimate leg prefemora and different numbers of apical spines on the coxopleuron. Scolopendra arborea Lewis, 1982, is placed in subjective synonymy with Scolopendra dehaani. A survey of external morphology of the genital segments confirms its potential for improving species identification in Scolopendra. Some observations on biology and behaviour are recorded based on field surveys in this area.
- Published
- 2016
- Full Text
- View/download PDF
5. Interaction of the tracheal tubules of Scutigeracoleoptrata (Chilopoda, Notostigmophora) with glandular structures of the pericardial septum.
- Author
-
Hilken G, Edgecombe GD, Müller CH, Sombke A, Wirkner CS, and Rosenberg J
- Abstract
Notostigmophora (Scutigeromorpha) exhibit a special tracheal system compared to other Chilopoda. The unpaired spiracles are localized medially on the long tergites and open into a wide atrium from which hundreds of tracheal tubules originate and extend into the pericardial sinus. Previous investigators reported that the tracheal tubules float freely in the hemolymph. However, here we show for the first time that the tracheal tubules are anchored to a part of the pericardial septum. Another novel finding is this part of the pericardial septum is structured as an aggregated gland on the basis of its specialized epithelium being formed by hundreds of oligocellular glands. It remains unclear whether the pericardial septum has a differently structure in areas that lack a connection with tracheal tubules. The tracheal tubules come into direct contact with the canal cells of the glands that presumably secrete mucous substances covering the entire luminal cuticle of the tracheal tubules. Connections between tracheae and glands have not been observed in any other arthropods.
- Published
- 2015
- Full Text
- View/download PDF
6. Species limits and phylogeography of Newportia (Scolopendromorpha) and implications for widespread morphospecies.
- Author
-
Edgecombe GD, Vahtera V, Giribet G, and Kaunisto P
- Abstract
The genus Newportia Gervais, 1847, includes some 60 nominal species distributed in the Caribbean islands and from Mexico to central South America. Modern keys to species and subspecies are available, greatly facilitating identification, but some species are based on few specimens and have incomplete documentation of taxonomically-informative characters. In order to explore genetic variability and evolutionary relationships within geographically-widespread morphospecies, specimens of Newportia (Newportia) stolli (Pocock, 1896) and Newportia (Newportia) divergens Chamberlin, 1922, two nominal species distinguished principally by differences in suture patterns on T1, were sequenced for mitochondrial 16S rRNA and cytochrome c oxidase subunit I (COI) genes from populations in southern Mexico, Guatemala, Honduras and Brazil. Newportia (Newportia) stolli is paraphyletic with respect to Newportia (Newportia) divergens within a clade from Guatemala, Honduras, and Chiapas (Mexico), most trees being consistent with a single loss of a connection between the anterior transverse suture on T1, whereas specimens of "Newportia (Newportia) stolli" from Brazil are not closely allied to those from the Mesomerican type area. The widespread morphospecies Newportia (Newportia) monticola Pocock, 1890, was sequenced for the same loci from populations in Costa Rica, Colombia and Brazil, finding that specimens from these areas do not unite as a monophyletic group. Samples of Newportia (Newportia) oreina Chamberlin, 1915, from different regions of Mexico form geographic clusters that resolve as each other's closest relatives. These results suggest that some widespread species of Newportia may be taxa of convenience more so than natural groupings. In several cases geographic proximity fits the phylogeny better than taxonomy, suggesting that non-monophyletic species do not result from use of inappropriate molecular markers. Molecular identification is possible for specimens missing taxonomically informative morphological characters, notably damaged specimens that lack the ultimate leg pair, a protocol that may also apply to other taxonomically difficult genera that are prone to damage (such as Cryptops).
- Published
- 2015
- Full Text
- View/download PDF
7. At the end of the rope: Geophilushadesi sp. n. - the world's deepest cave-dwelling centipede (Chilopoda, Geophilomorpha, Geophilidae).
- Author
-
Stoev P, Akkari N, Komerički A, Edgecombe GD, and Bonato L
- Abstract
A new geophilomorph centipede, Geophilushadesi sp. n., is described from caves in the Velebit Mountain, central Croatia. Together with Geophiluspersephones Foddai & Minelli, 1999, described from Pierre Saint-Martin cave in France, they are the only two remarkably troglomorphic geophilomorphs hitherto known. The new species apparently belongs to a group of Geophilus species inhabiting mainly Western and Southern Europe, with a uniquely modified pretarsus in the second maxillae. Geophilushadesi sp. n. shows unusual traits, some of which commonly found in troglobitic arthropods, including exceptionally elongated antennae, trunk segments and leg claws. The species is described upon specimens found in two caves at a depth below -250 m. Another two specimens apparently belonging to the same species have been recorded in another deep vertical cave at -980 m and -1100 m. The latter represents the world's deepest record of Chilopoda as a whole.
- Published
- 2015
- Full Text
- View/download PDF
8. Tentorial mobility in centipedes (Chilopoda) revisited: 3D reconstruction of the mandibulo-tentorial musculature of Geophilomorpha.
- Author
-
Koch M, Schulz J, and Edgecombe GD
- Abstract
Mandibular mechanisms in Geophilomorpha are revised based on three-dimensional reconstructions of the mandibulo-tentorial complex and its muscular equipment in Dicellophiluscarniolensis (Placodesmata) and Hydroschendylasubmarina (Adesmata). Tentorial structure compares closely in the two species and homologies can be proposed for the 14/17 muscles that attach to the tentorium. Both species retain homologues of muscles that in other Pleurostigmophora are traditionally thought to cause swinging movements of the tentorium that complement the mobility of the mandibles. Although the original set of tentorial muscles is simplified in Geophilomorpha, the arrangement of the preserved homologues conforms to a system of six degrees of freedom of movement, as in non-geophilomorph Pleurostigmophora. A simplification of the mandibular muscles is confirmed for Geophilomorpha, but our results reject absence of muscles that in other Pleurostigmophora primarily support see-saw movements of the mandibles. In the construction of the tentorium, paralabial sclerites seem to be involved in neither Placodesmata nor Adesmata, and we propose their loss in Geophilomorpha as a whole. Current insights on the tentorial skeleton and its musculature permit two alternative conclusions on their transformation in Geophilomorpha: either tentorial mobility is primarily maintained in both Placodesmata and Adesmata (contrary to Manton's arguments for immobility), or the traditional assumption of the tentorium as being mobile is a misinterpretation for Pleurostigmophora as a whole.
- Published
- 2015
- Full Text
- View/download PDF
9. Detecting taxonomic signal in an under-utilised character system: geometric morphometrics of the forcipular coxae of Scutigeromorpha (Chilopoda).
- Author
-
Gutierrez BL, Macleod N, and Edgecombe GD
- Abstract
To date, the forcipules have played almost no role in determining the systematics of scutigeromorph centipedes though in his 1974 review of taxonomic characters Markus Würmli suggested some potentially informative variation might be found in these structures. Geometric morphometric analyses were used to evaluate Würmli's suggestion, specifically to determine whether the shape of the forcipular coxa contains information useful for diagnosing species. The geometry of the coxae of eight species from the genera Sphendononema, Scutigera, Dendrothereua, Thereuonema, Thereuopoda, Thereuopodina, Allothereua and Parascutigera was characterised using a combination of landmark- and semi-landmark-based sampling methods to summarize group-specific morphological variation. Canonical variates analysis of shape data characterizing the forcipular coxae indicates that these structures differ significantly between taxa at various systematic levels. Models calculated for the canonical variates space facilitate identification of the main shape differences between genera, including overall length/width, curvature of the external coxal margin, and the extent to which the coxofemoral condyle projects laterally. Jackknifed discriminant function analysis demonstrates that forcipular coxal training-set specimens were assigned to correct species in 61% of cases on average, the most accurate assignments being those of Parascutigera (Parascutigera guttata) and Thereuonema (Thereuonema microstoma). The geographically widespread species Thereuopoda longicornis, Sphendononema guildingii, Scutigera coleoptrata, and Dendrothereua linceci exhibit the least diagnostic coxae in our dataset. Thereuopoda longicornis populations sampled from different parts of East and Southeast Asia were significantly discriminated from each other, suggesting that, in this case, extensive synonymy may be obscuring diagnosable inter-species coxal shape differences.
- Published
- 2011
- Full Text
- View/download PDF
10. A common terminology for the external anatomy of centipedes (Chilopoda).
- Author
-
Bonato L, Edgecombe GD, Lewis JG, Minelli A, Pereira LA, Shelley RM, and Zapparoli M
- Abstract
A common terminology for the external morphological characters of centipedes (Chilopoda) is proposed. Terms are selected from the alternatives used in the English literature, preferring those most frequently used or those that have been introduced explicitly. A total of 330 terms are defined and illustrated, and another ca. 500 alternatives are listed.
- Published
- 2010
- Full Text
- View/download PDF
11. The centipede genus Eupolybothrus Verhoeff, 1907 (Chilopoda: Lithobiomorpha: Lithobiidae) in North Africa, a cybertaxonomic revision, with a key to all species in the genus and the first use of DNA barcoding for the group.
- Author
-
Stoev P, Akkari N, Zapparoli M, Porco D, Enghoff H, Edgecombe GD, Georgiev T, and Penev L
- Abstract
The centipede genus Eupolybothrus Verhoeff, 1907 in North Africa is revised. A new cavernicolous species, Eupolybothruskahfi Stoev & Akkari, sp. n., is described from a cave in Jebel Zaghouan, northeast Tunisia. Morphologically, it is most closely related to Eupolybothrusnudicornis (Gervais, 1837) from North Africa and Southwest Europe but can be readily distinguished by the long antennae and leg-pair 15, a conical dorso-median protuberance emerging from the posterior part of prefemur 15, and the shape of the male first genital sternite. Molecular sequence data from the cytochrome c oxidase I gene (mtDNA-5' COI-barcoding fragment) exhibit 19.19% divergence between Eupolybothruskahfi and Eupolybothrusnudicornis, an interspecific value comparable to those observed among four other species of Eupolybothrus which, combined with a low intraspecific divergence (0.3-1.14%), supports the morphological diagnosis of Eupolybothruskahfi as a separate species. This is the first troglomorphic myriapod to be found in Tunisia, and the second troglomorph lithobiomorph centipede known from North Africa. Eupolybothrusnudicornis is redescribed based on abundant material from Tunisia and its post-embryonic development, distribution and habitat preferences recorded. Eupolybothruscloudsley-thompsoni Turk, 1955, a nominal species based on Tunisian type material, is placed in synonymy with Eupolybothrusnudicornis. To comply with the latest technological developments in publishing of biological information, the paper implements new approaches in cybertaxonomy, such as fine granularity XML tagging validated against the NLM DTD TaxPub for PubMedCentral and dissemination in XML to various aggregators (GBIF, EOL, Wikipedia), vizualisation of all taxa mentioned in the text via the dynamically created Pensoft Taxon Profile (PTP) page, data publishing, georeferencing of all localities via Google Earth, and ZooBank, GenBank and MorphBank registration of datasets. An interactive key to all valid species of Eupolybothrus is made with DELTA software.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.