To study the function of phytoene synthase gene in carotenoid synthesis of Dimocarpus longan Lour.(D. longan), a DlPSY gene identified from D. longan RNA-seq data was screened and analyzed in this research by bioinformatics methods including the primary structure of protein, physicochemical properties, signal peptide, transmembrane structure, subcellular localization, hydrophilicity, protein secondary structure and tertiary structure, coiled coil, protein binding site, phylogenetic tree, as well as protein-protein interaction. In addition, the real-time quantitative PCR(RT-qPCR)was applied in this research to analyze the expression pattern of DlPSY gene in root and leaf tissues. The bioinformatics software used in this research included NCBI BLAST, DNAMAN, NCBI CD search, Protparam, SignalP 4.1 Server, TMHMM Server, SOSUI, PSORT, ProtScale, SOPMA, COILS, SWISS-MODEL, MolProbity, 3DLigandSite, and STRING. The bioinformatics analysis results were as follows: The length of the DlPSY gene was 1 260 bp, coding for 420 amino acids; the DlPSY protein was predicted to have ‘Isoprenoid Biosyn C1' superfamily structure, contained a signal peptide, did not contain the transmembrane structure, and was a soluble hydrophilic and secretory protein which was predicted to be located outside the membrane; the DlPSY protein secondary structure was predicted to be mainly composed of α-helix and random coil; the DlPSY protein was predicted to have a coiled coil. The Ramachandran evaluation results showed that the tertiary structure model constructed by SWISS-MODEL was reliable, and its ligand binding sites were 344Phe and 347Lys, respectively. In addition, the expression pattern of the DlPSY gene was analyzed by RT-qPCR, the results of which showed that the DlPSY gene was expressed in roots and leaves of D. longan but with the different expression levels. The expression level of DlPSY gene was higher in leaves than that in roots. The results of this study will enrich our knowledge on PSY gene family and also lay a foundation for further improving the carotenoid content in D. longan by genetic methods. [ABSTRACT FROM AUTHOR]