1. [Validation of calculation method for dose distribution around radioactive iodine-125 particles based on AAPM TG43 report].
- Author
-
Tian SQ, Wang JJ, Ji Z, Jiang YL, Qiu B, Fan JH, and Sun HT
- Subjects
- Humans, Iodine Radioisotopes, Radiotherapy Dosage, Monte Carlo Method, Radiotherapy Planning, Computer-Assisted methods, Radiometry methods, Thyroid Neoplasms, Brachytherapy
- Abstract
Objective: According to the formula provided by the TG43 report [AAPM TG43 (2004)] proposed by the American Association of Physicists in Medicine (AAPM) in 2004, we calculated the dose distribution around the radioactive iodine-125 particles, and verified the calculation accuracy of the radioactive iodine-125 particles treatment planning system. Methods: AAPM TG43 (2004) report provides two calculation methods when calculating the dose around a single radioactive source. The calculation method that does not consider the geometric structure of the radioactive source is called point source calculation method, and the calculation method that considers the geometric structure of the radioactive source is called line source calculation method. Assuming a single Amersham 6711 radioactive iodine-125 particle with an activity of 100 U, the following point doses were calculated according to the two calculation methods provided by AAPM TG43 (2004) report, at 0°, 90° directions, distances 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6 cm; In the direction of 45°, the doses at 0.71, 1.41, 2.12, 2.83, 3.54, 4.24, 4.95, 5.66, 6.36, 7.07, 7.78 and 8.49 cm. On the clinically used brachytherapy planning system variseeds 8.0, the above two calculation methods are used to calculate the corresponding activity and the dose around the corresponding type of radioactive iodine-125 particles, and the function of capturing points to templates built in the planning system is used to accurately find the above corresponding point position, using a single measurement of the above corresponding point dose; and comparation of the results were performed to see if there is a statistical difference. Results: The AAPM TG43 report uses point source calculation method to calculate the dose of single Amersham 6711 radioactive iodine-125 particles with activity of 100 U at 0° and 90° directions. The points with the same distance and the same dose are 8 082.18, 1 870.08, 756.58, 381.47, 217.11, 131.91, 86.55, 58.32, 39.97, 27.42, 19.74, 14.13 Gy, respectively, at 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5 and 6 cm away from them. In the 45° direction, the doses at the distances of 0.71, 1.41, 2.12, 2.83, 3.54, 4.24, 4.95, 5.66, 6.36, 7.07, 7.78 and 8.49 cm are 3 957.37, 865.83, 329.99, 155.69, 84.10, 48.50, 28.49, 17.80, 11.37, 7.38, 4.98 and 3.39 Gy, respectively; For line source calculation method, radioactive particles are at the same distance as above. The doses at each point in the direction of 0° are 3 128.71, 755.44, 330.30, 180.53, 107.74, 68.56, 46.40, 32.22, 22.70, 16.00, 11.51, 8.24 Gy, respectively. The doses at each point in the direction of 90° are 8 306.46, 1 981.01, 802.74, 405.38, 230.60, 140.03, 91.83, 61.84, 42.36, 29.05, 20.91, 14.97 Gy; In the 45° direction, the dose at the corresponding distance as above is 4 020.78, 877.43, 333.49, 156.93, 84.69, 48.81, 28.65, 17.89, 11.42, 7.41, 4.99 and 3.40 Gy, respectively. The maximum dose difference (0.3%) between the two methods is 7.78 cm in the 45° direction, the maximum difference (-0.3%) between the two methods is 8.49 cm in the 45° direction, and the value of other sampling points is less than 0.3%. The closer the Amersham 6711 iodine-125 particles are to the source in the directions of 0°, 45°, and 90°, the faster the dose will drop, and the dose will drop gradually as the distance increases. Conclusion: The brachytherapy planning system variseeds 8.0 and the AAPM TG43 report calculate a maximum dose difference of 0.3%, which can accurately calculate the dose distribution around radioactive iodine-125 seeds, and provide a reliable tool for the clinical implementation of radioactive iodine-125 particles implantation for tumor treatment.
- Published
- 2023
- Full Text
- View/download PDF