1. Visible and infrared image fusion algorithm for underground personnel detection
- Author
-
ZHOU Libing, CHEN Xiaojing, JIA Wenqi, WEI Jianjian, YE Baisong, and ZOU Sheng
- Subjects
mining intelligent vehicles ,unmanned driving ,personnel detection ,deep learning ,multi sensor image fusion ,infrared images ,multiple attention mechanisms ,Mining engineering. Metallurgy ,TN1-997 - Abstract
The working environment and lighting conditions of mining intelligent vehicles are complex. When detecting underground personnel, infrared reflection information and detailed texture information can be fused into visible light images by fusing visible and infrared images to improve the target detection effect. Traditional visible and infrared image fusion methods can lead to blurring of image edges and textures as the number of decomposition layers increases, and the fusion time also increases. At present, deep learning based fusion methods for visible and infrared images are difficult to balance the features in visible and infrared images, resulting in blurred detail information in the fused images. In order to solve the above problems, the image fusion algorithm based on multiple attention modules (IFAM) is proposed. Firstly, convolutional neural networks are used to extract image features from visible and infrared images. Secondly, the extracted features are cross fused using spatial attention and channel attention modules. The fusion weights of the output features of the two attention modules are calculated using the gradient information in the features. The output features of the two attention modules are fused based on the weights. Finally, the image features are restored through deconvolution transformation to obtain the final fused image. The fusion results on the RoadScene dataset and TNO dataset indicate that the IFAM fused image contains both background texture information from visible light images and personnel contour feature information from infrared images. The fusion results on the underground dataset indicate that in low lighting environments, infrared images can compensate for the shortcomings of visible light and are not affected by other light sources in the environment. In low lighting conditions, the personnel contour in the fused image is still obvious. The comparative analysis results show that the information entropy (EN), standard deviation (SD), gradient fusion metric (QAB/F), visual information fidelity for fusion (VIFF), and the union structural similarity index measure (SSIMu) of the image after IFAM fusion are 4.901 3, 88.521 4, 0.169 3, 1.413 5, and 0.806 2, respectively. The overall performance is superior to similar algorithms such as LLF-IOI and NDM.
- Published
- 2023
- Full Text
- View/download PDF