1. Preparation of filaments for 3D printing of pharmaceutical dosage forms
- Author
-
Martić, Ines and Matijašić, Gordana
- Subjects
oslobađanje lijeka ,dronedarone hydrochloride ,swelling ,filament ,TEHNIČKE ZNANOSTI. Kemijsko inženjerstvo ,TECHNICAL SCIENCES. Chemical Engineering ,3D-tisak ,dronedaron-hidroklorid ,3D print ,bubrenje ,drug release - Abstract
Cilj ovog rada je priprava filamenata koji će sadržavati dronedaron-hidroklorid kao djelatnu tvar postupkom ekstrudiranja taljenjem pri što nižoj temperaturi zbog toplinske osjetljivosti djelatne tvari. Također, iz dobivenih filamenata potrebno je proizvesti kocke tehnikom 3D-tiska te provesti karakterizaciju. Korištene su mješavine dronedaron-hidroklorida, polikaprolaktona, polietilen glikola i Soluplusa u različitim udjelima iz kojih su priređena tri filamenta: dronedaron-polikaprolakton (F), dronedaron-polikaprolakton-polietilen glikol (FP) i dronedaron-polikaprolakton-Soluplus (FS). Filamenti su ekstrudirani pri 100 ℃, izmjeren im je promjer digitalnom pomičnom mjerkom. Iz dobivenih filamenata, pomoću 3D-printera, pripravljene su kocke koje su podvrgnute testu bubrenja u tri otopine: destilirana voda, fosfatni pufer i klorovodična kiselina. Sadržaj dronedarona u filamentima i kockama određen je UV/Vis spektrofotometrijom. Rezultati pokazuju da filament FP ima promjer najbliži ciljanom od 1,75 mm koji je potreban za 3D-printer te da su odstupanja u promjeru uzduž filamenta najmanja. Najveći udio dronedarona postignut je u filamentu FS. Od istiskanih kocki najpravilnija je kocka FS dok je iz kocke FP oslobođeno više DNR-a. Spektrofotometrijski određen sadržaj dronedarona u filamentima i kockama znatno je manji od stvarnog. Mogući uzrok tome je slaba topljivost polikaprolaktona u acetonu što je imalo za posljedicu nepotpuno otapanje dronedarona. Rezultati testa bubrenja pokazali su neznatno povećanje mase nakon tri dana u svim otopinama. Unatoč nižim temperaturama obrade postignutim upotrebom polikaprolaktona, njegov nedostatak je mali intenzitet bubrenja, a time i vrlo sporo oslobađanje djelatne tvari. The aim of this work is to prepare filaments containing dronedarone hydrochloride as an active pharmaceutical ingredient by hot melt extrusion at the lowest possible temperature due to the thermal sensitivity of the active pharmaceutical ingredient. In addition, the filaments were used for the fabrication of cubes by 3D printing process, which were subsequently characterized. Mixtures of dronedarone hydrochloride, polycaprolactone, polyethylene glycol and Soluplus in different proportions were used in the preparation of the filaments, from which three filaments were prepared: Dronedarone-polycaprolactone (F), Dronedarone-polycaprolactonepolyethylene glycol (FP) and Dronedarone-polycaprolactone-Soluplus (FS). The filaments were extruded at 100 ℃, and their diameter was measured using a digital moving gauge. The obtained filaments were used to make cubes with a 3D printer, which were subjected to a swelling test in three solutions: distilled water, phosphate buffer and hydrochloric acid. The content of dronedarone in the filaments and cubes was determined by UV/Vis spectrophotometry. The results show that the filament FP has the diameter closest to the target value of 1.75 mm required for a 3D printer and that the diameter variations along the filament are the smallest. The highest percentage of dronedarone was achieved with the FS filament. Of the printed cubes, the FS cube is the most visually correct, while more DNR is released from the FP cube. The spectrophotometrically determined content of dronedarone in filaments and cubes is significantly lower than the actual content. One possible reason for this is the poor solubility of polycaprolactone in acetone, which resulted in incomplete dissolution of dronedarone. The results of the swelling test showed a slight increase in mass after three days in all solutions. Despite the lower processing temperatures achieved when using polycaprolactone, the disadvantage is the low swelling intensity and thus the very slow release of the active ingredient.
- Published
- 2021