1. Pell numbers
- Author
-
Marić, Helena and Franušić, Zrinka
- Subjects
Pellova jednadžba ,polygonal numbers ,poligonalni brojevi ,racionalne aproksimacije ,Pell's equation ,Pell–Lucasovi brojevi ,PRIRODNE ZNANOSTI. Matematika ,Pythagorean triples ,triangular schemes ,rational approximations ,Pitagorine trojke ,Pell–Lucas numbers ,NATURAL SCIENCES. Mathematics ,trokutaste sheme - Abstract
Niz Pellovih brojeva zadan je početnim uvjetima \(P_1=1, P_2=2\), te rekurzivnom relacijom \(P_n=2P_{n-1}+P_{n-2}, n \geq 3\). Uz definiciju Pellovih brojeva, u radu su definirani i Pell–Lucasovi brojevi koji su s njima usko povezani. Navedena su različita svojstva i identiteti s Pellovim i Pell–Lucasovima brojevima, kao i najvažniji dokazi istih. Pellovi brojevi vežu se i uz Pellovu jednad žbu \(x^2-2y^2=1\) te uz racionalne aproksimacije \(\sqrt{2}\). U radu su opisane i neke trokutaste sheme s Pellovim brojevima te njihova veza s Pitagorinim trojkama i poligonalnim brojevima. The Pell numbers sequence is defined with initial conditions: \(P_1=1, P_2=2\) and by the recurrence relation \(P_n=2P_{n-1}+P_{n-2}, n \geq 3\). Since they are closely related to Pell numbers, Pell-Lucas numbers are defined in this thesis. We showed the properties and identities of both Pell and Pell-Lucas numbers as proofs of the most important ones. Pell numbers are in close relation with Pell’s equation \(x^2-2y^2=1\), and we stated the relation between Pell numbers and approximation of \(\sqrt{2}\). We described some triangular schemes with Pell’s numbers and stated the relation between Pell numbers, Pythagorean triplets, and polygonal numbers.
- Published
- 2022