125 results on '"Bridges, J. C."'
Search Results
2. The Winchcombe meteorite—A regolith breccia from a rubble pile CM chondrite asteroid.
- Author
-
Suttle, M. D., Daly, L., Jones, R. H., Jenkins, L., van Ginneken, M., Mitchell, J. T., Bridges, J. C., Hicks, L. J., Johnson, D., Rollinson, G., Taylor, R., Genge, M. J., Schröder, C., Trimby, P., Mansour, H., Piazolo, S., Bonsall, E., Salge, T., Heard, R., and Findlay, R.
- Subjects
CARBONACEOUS chondrites (Meteorites) ,METEORITES ,BRECCIA ,ASTEROIDS ,REGOLITH ,PETROLOGY ,GRAIN size ,METEOROIDS - Abstract
The Winchcombe meteorite is a CM chondrite breccia composed of eight distinct lithological units plus a cataclastic matrix. The degree of aqueous alteration varies between intensely altered CM2.0 and moderately altered CM2.6. Although no lithology dominates, three heavily altered rock types (CM2.1–2.3) represent >70 area%. Tochilinite–cronstedtite intergrowths (TCIs) are common in several lithologies. Their compositions can vary significantly, even within a single lithology, which can prevent a clear assessment of alteration extent if only TCI composition is considered. We suggest that this is due to early alteration under localized geochemical microenvironments creating a diversity of compositions and because later reprocessing was incomplete, leaving a record of the parent body's fluid history. In Winchcombe, the fragments of primary accretionary rock are held within a cataclastic matrix (~15 area%). This material is impact‐derived fallback debris. Its grain size and texture suggest that the disruption of the original parent asteroid responded by intergranular fracture at grain sizes <100 μm, while larger phases, such as whole chondrules, splintered apart. Re‐accretion formed a poorly lithified body. During atmospheric entry, the Winchcombe meteoroid broke apart with new fractures preferentially cutting through the weaker cataclastic matrix and separating the breccia into its component clasts. The strength of the cataclastic matrix imparts a control on the survival of CM chondrite meteoroids. Winchcombe's unweathered state and diversity of lithologies make it an ideal sample for exploring the geological history of the CM chondrite group. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Oxygen Isotopes and the Early Solar System
- Author
-
Franchi, I. A., Baker, L., Bridges, J. C., Wright, I. P., and Pillinger, C. T.
- Published
- 2001
4. Synchrotron x‐ray diffraction for sealed Mars Sample Return sample tubes.
- Author
-
Adam, L. F., Bridges, J. C., Bedford, C. C., Holt, J. M. C., Rampe, E., Thorpe, M., Mason, K., and Ewing, R. C.
- Subjects
- *
X-ray diffraction , *SYNCHROTRONS , *X-ray powder diffraction , *TUBES , *MARS (Planet) , *TITANIUM alloys - Abstract
The joint NASA‐ESA Mars sample return campaign aims to return up to 31 sample tubes containing drilled sedimentary and igneous cores and regolith. The titanium alloy tubes will initially still be sealed when they are retrieved. Several types of measurement will be carried out on sealed samples in the pre‐basic characterization phase of scientific investigation. We show that powder x‐ray diffraction (XRD) analysis can be successfully carried out on sealed samples using an x‐ray source at the I12 beamline of Diamond Light Source synchrotron. Our experiment used an analog sample tube and a Martian regolith analog (Icelandic basaltic sand). The titanium walls of the tube analog give strong but few diffraction peaks, making identification of the major constituent mineral phases feasible. A more significant constraint on quantification of mineral phase abundances by this XRD technique is likely to be the grain size of the sample. This technique opens up the possibility of initial mineralogical analysis of samples returned from Jezero crater without opening the sample tubes and the potential changes to the sample that entails. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
5. Enhanced Groundwater Flow on and Below Vera Rubin Ridge, the Murray Formation, Gale Crater: Evidence from Thermochemical Modeling.
- Author
-
Turner, S. M. R, Schwenzer, S. P, Bridges, J. C, Rampe, E. B, Bedford, C. C, Achilles, C. N, McAdam, A, Mangold, N, Hicks, L. J, Parnell, J, Kirnbauer, T, Fraeman, A. A, and Reed, M. H
- Subjects
Space Sciences (General) - Abstract
NASA’s Mars Science Laboratory Curiosity rover has been exploring Vera Rubin ridge (VRR), part of the Murray formation in Gale crater, Mars, between sol 1809 and 2302. Evidence for Fe-oxides and phyllosilicates in mineralogical and geochemical data for this region was returned by Curiosity [1-5]. We applied thermochemical modeling to con-strain the formation conditions of the phyllosilicate-hematite assemblage identified on and below VRR. Average alteration compositions for the Murray formation on and below VRR were derived using CheMin and APXS data. These compositions were reacted with Gale Portage Water (GPW) between 25–100 °C and for 10% and 50% Fe3+/Fetot of the host rock [6]. Here we summarize models run at 50 °C and 10% Fe3+/Fetot for alteration compositions derived from Murray host rock compositions.
- Published
- 2020
6. Characterisation of Float Rocks at Ireson Hill, Gale Crater
- Author
-
Bowden, D. L, Bridges, J. C, Schwenzer, S. P, Wiens, R. C, Gasnault, O, Thompson, L, Gasda, P, and Bedford, C
- Subjects
Space Sciences (General) - Abstract
Float rocks discovered by surface missions on Mars have given unique insights into the sedimentary, diagenetic and igneous processes that have operated throughout the planet’s history. In addition, Gale sedimentary rocks, both float and in situ, record a combination of source compositions and diagenetic overprints. We examine a group of float rocks that were identified by the Mars Science Laboratory mission’s Curiosity rover at the Ireson Hill site, circa. sol 1600 using ChemCam LIBS, APXS and images from the MastCam, Mars Hand Lens Imager (MAHLI) and ChemCam Remote Micro-Imager (RMI) cameras. Geochemical data provided by the APXS and ChemCam instruments allow us to compare the compositions of these rocks to known rock types from Gale crater, as well as elsewhere on Mars. Ireson Hill is a 15 m long butte in the Murray formation with a dark cap-ping unit with chemical and stratigraphic consistency with the Stimson formation. A total of 6 float rocks have been studied on the butte.
- Published
- 2020
7. The Role of Diagenesis at Vera Rubin Ridge in Gale Crater, Mars, and the Chemostratigraphy of the Murray Formation as Observed by the Chemcam Instrument
- Author
-
Frydenvang, J, Mangold, N, Wiens, R. C, Fraeman, A. A, Edgar, L. A, Fedo, C, L’Haridon, J, Bedford, C. C, Gupta, S, Grotzinger, J. P, Bridges, J. C, Clark, B. C, Rampe, E. B, Gasnault, O, Maurice, S, Gasda, P. J, Lanza, N. L, Olilla, A. M, Meslin, P.-Y, Payr, V, Calef, F, Salvatore, M, House, C. H, and Gabriel, T. S. J
- Subjects
Space Sciences (General) - Abstract
The Mars Science Laboratory (MSL) Curiosity rover explored Vera Rubin ridge (VRR) in Gale crater, Mars, for almost 500 sols (Mars days) between arriving at the ridge on sol 1809 of the mission in September 2017 and leaving it on sol 2302 upon entering the Glen Torridon area south of the ridge. VRR is a topographic ridge on the central mound, Aeolis Mons (Mt. Sharp), in Gale crater that displays a strong hematite spectral signature from orbit. In-situ observations on the ridge led to the recognition that the ridge-forming rocks belong to the Murray formation, the lowermost exposed stratigraphic unit of the Mt. Sharp group, that was first encountered at the Pahrump Hills location. Including VRR rocks, the Murray formation, interpreted to be primarily deposited in an ancient lacustrine environment in Gale crater, is more than 300 m thick. VRR itself is composed of two stratigraphic members within the Murray formation, the Pettegrove Point member overlain by the Jura member. The Pettegrove Point member overlies the Blunts Point member of the Murray formation. Areas of gray coloration are observed in the Jura member predominantly, but also in the Pettegrove Point member. Generally, gray areas are found in local topographic depressions, but contacts between red and gray rocks crosscut stratigraphy. Additionally, cm-scale dark concretions with very high iron-content are commonly observed in gray rocks, typically surrounded by a lighttoned zone that is conversely depleted in iron. A key goal for the VRR campaign was to characterize geochemical variations in the ridge-forming rocks to investigate the role of primary and diagenetic controls on the geochemistry and morphology of VRR. Here, we present observations by the ChemCam instrument on VRR and compare these to the full Murray formation chemostratigraphy. This work was recently submitted to a special issue of JGRPlanets that detail the full VRR campaign.
- Published
- 2020
8. Thermochemical Modelling of Fluid-Rock Reactions in Vera Rubin Ridge, Galecrater, Mars
- Author
-
Turner, S. M. R, Schwenzer, S. P, Bridges, J. C, Bedford, C. C, Rampe, E. B, Fraeman, A. A, McAdam, A, Mangold, N, and L'Haridon, J
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Vera Rubin Ridge (VRR) in Gale Crater, Mars, is a ~200 m wide ~6.5 km long northeast- southwest resistant geomorphological feature on the northern slopes of Aeolis Mons (Mt. Sharp). Analysis of Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) orbital data showed that VRR has strong hematite spectral signatures. Hematite was confirmed in-situ at VRR with the Curiosity rover and has been shown to be present throughout the Mur- ray formation. VRR is stratigraphically continu-ous with the underlying Murray formation. Previous thermochemical modelling showed how hematite at VRR could have formed as the result of open-system weathering at high water/rock ratios. Here we use thermochemical modelling to investigate possible reaction pathways for the hematite-clay- bearing assemblage observed at VRR, starting from an identified least-altered (minimum clay content) Murray composition, and a Mars basal brine.
- Published
- 2019
9. Using Chemcam Derived Geochemistry to Identify the Paleonet Sediment Transport Direction and Source Region Characteristics of the Stimson Formation in Gale Crater, Mars
- Author
-
Bedford, C. C, Schwenzer, S. P, Bridges, J. C, Banham, S, Wiens, R. C, Frydenvang, J, Gasnault, O, Rampe, E. B, and Gasda, P. J
- Subjects
Space Sciences (General) - Abstract
The NASA Curiosity rover has encountered both ancient and modern dune deposits within Gale crater. The modern dunes are actively migrating across the surface within the Bagnold Dune field of which Curiosity conducted analysis campaigns at two different localities. Variations in mafic-felsic mineral abundances between these two sites have been related to the aeolian mineral sorting regime for basaltic environments identified on the Earth which become preferentially enriched in olivine relative to plagioclase feldspar with increasing distance from the source. This aeolian mineral sorting regime for basaltic minerals has also been inferred for Mars from orbital data. The aim of this study is to investigate whether this aeolian mafic-felsic mineral sorting trend has left a geochemical signature in the ancient dune deposits preserved within the Stimson formation. The Stimson formation unconformably overlies the Murray formation and consists of thickly laminated, cross-bedded sandstone. Stimson outcrops have a variable thickness up to 5 meters covering a total area of 17 square kilometers. A dry, aeolian origin was determined for this sandstone due to the high sphericity and roundness of the grains, uniform bimodal grain size distribution (250-710 microns), and 1-meter-thick cross-beds. Identifying the geochemical signature of mineral sorting can provide insights about the paleo-net sediment transport direction of the dunes and prevailing wind direction at the time of deposition.
- Published
- 2019
10. The Colour and Stereo Surface Imaging System (CaSSIS) for the ExoMars Trace Gas Orbiter
- Author
-
Thomas, N., Cremonese, G., Ziethe, R., Gerber, M., Brändli, M., Bruno, G., Erismann, M., Gambicorti, L., Gerber, T., Ghose, K., Gruber, M., Gubler, P., Mischler, H., Jost, J., Piazza, D., Pommerol, A., Rieder, M., Roloff, V., Servonet, A., Trottmann, W., Uthaicharoenpong, T., Zimmermann, C., Vernani, D., Johnson, M., Pelò, E., Weigel, T., Viertl, J., De Roux, N., Lochmatter, P., Sutter, G., Casciello, A., Hausner, T., Ficai Veltroni, I., Da Deppo, V., Orleanski, P., Nowosielski, W., Zawistowski, T., Szalai, S., Sodor, B., Tulyakov, S., Troznai, G., Banaskiewicz, M., Bridges, J. C., Byrne, S., Debei, S., El-Maarry, M. R., Hauber, E., Hansen, C. J., Ivanov, A., Keszthelyi, L., Kirk, R., Kuzmin, R., Mangold, N., Marinangeli, L., Markiewicz, W. J., Massironi, M., McEwen, A. S., Okubo, C., Tornabene, L. L., Wajer, P., and Wray, J. J.
- Published
- 2017
- Full Text
- View/download PDF
11. Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars
- Author
-
MSL Science Team, McLennan, S. M., Anderson, R. B., Bell, J. F., Bridges, J. C., Calef, F., Campbell, J. L., Clark, B. C., Clegg, S., Conrad, P., Cousin, A., Des Marais, D. J., Dromart, G., Dyar, M. D., Edgar, L. A., Ehlmann, B. L., Fabre, C., Forni, O., Gasnault, O., Gellert, R., Gordon, S., Grant, J. A., Grotzinger, J. P., Gupta, S., Herkenhoff, K. E., Hurowitz, J. A., King, P. L., Le Mouélic, S., Leshin, L. A., Léveillé, R., Lewis, K. W., Mangold, N., Maurice, S., Ming, D. W., Morris, R. V., Nachon, M., Newsom, H. E., Ollila, A. M., Perrett, G. M., Rice, M. S., Schmidt, M. E., Schwenzer, S. P., Stack, K., Stolper, E. M., Sumner, D. Y., Treiman, A. H., VanBommel, S., Vaniman, D. T., Vasavada, A., Wiens, R. C., and Yingst, R. A.
- Published
- 2014
12. Geochemical Endmembers Preserved in Gale Crater: A Tale of Two Mudstones and Their Compositional Differences According to Chemcam
- Author
-
Bedford, C. C, Schwenzer, S. P, Bridges, J. C, Wiens, R. C, Rampe, E. B, Frydenvang, J, and Gasda, P. J
- Subjects
Geophysics - Abstract
Gale crater contains two fine-grained mudstone sedimentary units: The Sheepbed mudstone member, and the Murray formation mud-stones. These mudstones formed as part of an ancient fluviolacustrine system. The NASA Curiosity rover has analysed these mudstone units using the Chemistry and Camera (ChemCam), Alpha Particle X-ray Spectrometer (APXS) and Chemistry and Mineralogy (CheMin) onboard instrument suites. Subsequent mineralogical analyses have uncovered a wide geochemical and mineralogical diversity across and within these two mudstone formations. This study aims to determine the principal cause (alteration or source region) of this geochemical variation through a statistical analysis of the ChemCam dataset up to sol 1482, including the lower to middle Murray formation.
- Published
- 2018
13. Martian Fluvial Conglomerates at Gale Crater
- Author
-
Williams, R. M. E., Grotzinger, J. P., Dietrich, W. E., Gupta, S., Sumner, D. Y., Wiens, R. C., Mangold, N., Malin, M. C., Edgett, K. S., Maurice, S., Forni, O., Gasnault, O., Ollila, A., Newsom, H. E., Dromart, G., Palucis, M. C., Yingst, R. A., Anderson, R. B., Herkenhoff, K. E., Le Mouélic, S., Goetz, W., Madsen, M. B., Koefoed, A., Jensen, J. K., Bridges, J. C., Schwenzer, S. P., Lewis, K. W., Stack, K. M., Rubin, D., Kah, L. C., Bell, J. F., Farmer, J. D., Sullivan, R., Van Beek, T., Blaney, D. L., Pariser, O., and Deen, R. G.
- Published
- 2013
- Full Text
- View/download PDF
14. Fluids During Diagenesis and Sulfate Vein Formation in Sediments at Gale Crater, Mars
- Author
-
Schwenzer, S. P, Bridges, J. C, Weins, R. C, Conrad, P. G, Kelley, S. P, Leveille, R, Mangold, N, Martin-Torres, J, McAdam, A, Newsom, H, Zorzano, M. P, Rapin, W, Spray, J, Treiman, A. H, Westall, F, Fairen, A. G, and Meslin, P.-Y
- Subjects
Lunar And Planetary Science And Exploration - Abstract
We model the fluids involved in the alteration processes recorded in the Sheep bed Member mudstones of Yellowknife Bay (YKB), Gale crater, Mars, as revealed by the Mars Science Laboratory Curiosity rover investigations. We compare the Gale crater waters with fluids modeled for shergottites, nakhlites, and the ancient meteorite ALH 84001, as well as rocks analyzed by the Mars Exploration rovers, and with terrestrial ground and surface waters. The aqueous solution present during sediment alteration associated with phyllosilicate formation at Gale was high in Na, K, and Si; had low Mg, Fe, and Al concentrations relative to terrestrial ground waters such as the Deccan Traps and other modeled Mars fluids; and had near neutral to alkaline pH. Ca and S species were present in the 10(exp -3) to 10(exp -2) concentration range. A fluid local to Gale crater strata produced the alteration products observed by Curiosity and subsequent evaporation of this ground water- type fluid formed impure sulfate- and silica-rich deposits veins or horizons. In a second, separate stage of alteration, partial dissolution of this sulfate-rich layer in Yellowknife Bay,or beyond, led to the pure sulfate veins observed in YKB. This scenario is analogous to similar processes identified at a terrestrial site in Triassic sediments with gypsum veins of the Mercia Mudstone Group in Watchet Bay, UK.
- Published
- 2016
- Full Text
- View/download PDF
15. Modeling of Sulfide Microenvironments on Mars
- Author
-
Schwenzer, S. P, Bridges, J. C, McAdam, A, Steer, E. D, Conrad, P. G, Kelley, S. P, Wiens, R. C, Mangold, N, Grotzinger, J, Eigenbrode, J. L, Franz, H. B, and Sutter, B
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Yellowknife Bay (YKB; sol 124-198) is the second site that the Mars Science Laboratory Rover Curiosity investigated in detail on its mission in Gale Crater. YKB represents lake bed sediments from an overall neutral pH, low salinity environment, with a mineralogical composition which includes Ca-sulfates, Fe oxide/hydroxides, Fe-sulfides, amorphous material, and trioctahedral phyllosilicates. We investigate whether sulfide alteration could be associated with ancient habitable microenvironments in the Gale mudstones. Some textural evidence for such alteration may be pre-sent in the nodules present in the mudstone.
- Published
- 2016
16. Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars
- Author
-
McLennan, S. M., Anderson, R. B., Bell, J. F., III, Bridges, J. C., Calef, F., III, Campbell, J. L., Clark, B. C., Clegg, S., Conrad, P., Cousin, A., Des Marais, D. J., Dromart, G., Dyar, M. D., Edgar, L. A., Ehlmann, B. L., Fabre, C., Forni, O., Gasnault, O., Gellert, R., Gordon, S., Grant, J. A., Grotzinger, J. P., Gupta, S., Herkenhoff, K. E., Hurowitz, J. A., King, P. L., Le Mouélic, S., Leshin, L. A., Léveillé, R., Lewis, K. W., Mangold, N., Maurice, S., Ming, D. W., Morris, R. V., Nachon, M., Newsom, H. E., Ollila, A. M., Perrett, G. M., Rice, M. S., Schmidt, M. E., Schwenzer, S. P., Stack, K., Stolper, E. M., Sumner, D. Y., Treiman, A. H., VanBommel, S., Vaniman, D. T., Vasavada, A., Wiens, R. C., and Yingst, R. A.
- Published
- 2014
17. Calcium Sulfate Characterized by ChemCam/Curiosity at Gale Crater, Mars
- Author
-
Nachon, M, Clegg, S. N, Mangold, N, Schroeder, S, Kah, L. C, Dromart, G, Ollila, A, Johnson, J. R, Oehler, D. Z, Bridges, J. C, LeMouelic, S, Forni, O, Wiens, R. C, Rapin, W, Anderson, R. B, Blaney, D. L, Bell, J. F. , III, Clark, B, Cousin, A, Dyar, M. D, Ehlmann, B, Fabre, C, Gasnault, O, Grotzinger, J, Lasue, J, Lewin, E, Leveille, R, McLennan, S, Maurice, S, Meslin, P.-Y, Rice, M, Squyres, S. W, Stack, K, Sumner, D. Y, Vaniman, D, and Wellington, D
- Subjects
Geophysics - Abstract
Onboard the Mars Science Laboratory (MSL) Curiosity rover, the ChemCam instrument consists of :(1) a Laser-Induced Breakdown Spectrometer (LIBS) for elemental analysis of the targets [1;2] and (2) a Remote Micro Imager (RMI), for the imaging context of laser analysis [3]. Within the Gale crater, Curiosity traveled from Bradbury Landing through the Rocknest region and into Yellowknife Bay (YB). In the latter, abundant light-toned fracture-fill material were seen [4;5]. ChemCam analysis demonstrate that those fracture fills consist of calcium sulfates [6].
- Published
- 2014
18. Chemical Evidence for Smectites and Zeolites on Mars: Criteria and Limitations
- Author
-
Clark, B. C, Ming, D, Vaniman, D, Wiens, R, Gellert, R, Bridges, J. C, and Morris, D
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Aqueous alteration on Mars can produce a range of tell-tale secondary minerals [1]. Surface missions typically obtain detailed and highly localized element compositional information, but not always mineralogical information, whereas orbital missions deduce mineralogy from relatively high spatial resolution IR spectral mapping (decameters scale, for CRISM), but obtain element data only over much larger areas of martian terrain (~200 km). Surface missions have also discovered several occurrences of major geochemical alteration of igneous precursors, for many of which elemental compositional is the only diagnostic information available. Many types of clays and zeolites have quasi-unique element profiles which may be used to implicate their presence. In some cases, one or more candidate minerals are sufficiently close in their component elements and their stoichiometry that ambiguity must remain, unless other constraints can be brought to bear. Geochemical characteristics of alteration products most likely on Mars can be compared to results from MER and MSL rover missions (e.g. Independence [4] and Esperance samples). These considerations are needed for MER Opportunity rover now that Mini-TES is no longer operational. It also has importance for exploration by the MSL Curiosity rover because inferences and deductions available from ChemCam (CCAM) remote LIBS and/or in situ x-ray fluorescence (APXS) can be used as indicators for triage to select materials to sample for limited-resource instruments, SAM and Chemin.
- Published
- 2014
19. Finding Interstellar Particle Impacts on Stardust Aluminium Foils: The Safe Handling, Imaging, and Analysis of Samples Containing Femtogram Residues
- Author
-
Kearsley, A. T, Westphal, A. J, Stadermann, F. J, Armes, S. P, Ball, A. D, Borg, J, Bridges, J. C, Brownlee, D. E, Burchell, M. J, Chater, R. J, Davis, A. M, Floss, C, Flynn, G, Gainsforth, Z, Gruen, E, Heck, P, Hoppe, P, Hoerz, F, Howard, L. E, Howe, G, Huss, G. R, Huth, J, Landgraf, M, Leitner, J, and Leroux, H
- Subjects
Space Sciences (General) - Abstract
Impact ionisation detectors on a suite of spacecraft have shown the direction, velocity, flux and mass distribution of smaller ISP entering the Solar System. During the aphelion segments of the Stardust flight, a dedicated collector surface was oriented to intercept ISP of beta = 1, and returned to Earth in January 2006. In this paper we describe the probable appeareance and size of IS particle craters from initial results of experimental impacts and numerical simulation, explain how foils are being prepared and mounted for crater searching by automated acquisition of high magnification electron images (whilst avoiding contamination of the foils) and comment on appropriate analytical techniques for Preliminary Examination (PE).
- Published
- 2010
20. Feldspathic Cumulate Samples and Plutonic Rocks in Gale Crater: Comparisons to Martian Meteorites
- Author
-
Bridges, J. C., Cousin, A., Sautter, V., William Rapin, Bowden, D., Thompson, L., Schwenzer, S. P., Bedford, C., Payre, V., Gasnault, O., Forni, O., Pinet, P., Wiens, R., Yingst, R. A., Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), and Los Alamos National Laboratory (LANL)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
The Curiosity Rover of Mars Science Laboratory has identified igneous float rocks in Gale Crater which offer new insights about the differentiation of the martian lithosphere. Here we describe likely origins for some unique Gale plutonic and cumulate rocks and compare to the martian meteorites. At the Ireson Hill locality around sol 1606 a group of float rocks with resistant, dreikanter morphologies were identified which include igneous textures, notably the 10 cm Pogy sample. On sol 2016 of the MSL mission, a group of float rocks were studied in detail, including Askival, which is a light toned rock igneous rock similar to Peacock_Hills (sol 19) and Bindi (sol 544).
- Published
- 2019
21. Machine Learning Applied to MSL/Chemcam Data
- Author
-
Forni, O., Gasnault, O., Cousin, A., Anderson, R. B., Dehouck, E., David, G., Pinet, P., Bridges, J. C., Wiens, R. C., Maurice, S., Meslin, P.-Y., Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), and Los Alamos National Laboratory (LANL)
- Subjects
[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; We want to test and evaluate the performances in terms of classification and prediction of machine learning techniques applied to the ChemCam data.
- Published
- 2019
22. Probable Chondritic Fragments Detected by ChemCam in Gale Crater
- Author
-
Lasue, J., Meslin, P. Y., Sautter, V., Maroger, I., Krämer Ruggiu, L., Bridges, J. C., Lewin, E., Wiens, R. C., Beck, P., Cousin, A., Forni, O., Gasnault, O., Goetz, W., Johnson, J. R., Le Mouélic, S., Nachon, M., Newsom, H., Maurice, S., Wellington, D. F., Los Alamos National Laboratory (LANL), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), and Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; ChemCam identified two fragments with elevated Ni (>1wt.%) and MgO ( 20-30wt.%) and an Mg/Si ratio consistent with ordinary chondrites.
- Published
- 2019
23. Using ChemCam-Derived Geochemistry to Identify the Paleonet Sediment Transport Direction and Source Region Characteristics of the Stimson Formation in Gale Crater, Mars
- Author
-
Bedford, C. C., Schwenzer, S. P., Bridges, J. C., Banham, S., Wiens, R. C., Frydenvang, J., Gasnault, O., Rampe, E. B., Gasda, P. J., Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), and Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; We have identified the geochemical signature of mineral sorting in Gale's ancient dune deposits and used this to estimate the net sediment transport direction.
- Published
- 2019
24. Diversity and Areal Density of Iron-Nickel Meteorites Analyzed by Chemcam in Gale Crater
- Author
-
Y Meslin, P., Wellington, D., Wiens, R. C., Johnson, J. R., Beek, J., Gasnault, O., Sautter, V., Maroger, I., Lasue, J., Beck, P., Bridges, J. C., Cohen, B., Ashley, J. W., Fairen, A. G., Newsom, H., Cousin, A., Forni, O., Calef, F., William Rapin, Maurice, S., Chide, B., Schröder, S., Goetz, W., Mangold, N., Gabriel, T., Lanza, N., Pinet, P., Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH)-NASA, Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, and Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; A dozen iron meteorites have been analyzed in Gale Crater, with distinct compositions. We estimate their areal density, discuss their fate and distribution.
- Published
- 2019
25. SEM-EDS Analyses of Small Craters in Stardust Aluminum Foils: Implications for the Wild-2 Dust Distribution
- Author
-
Borg, J, Horz, F, Bridges, J. C, Burchell, M. J, Djouadi, Z, Floss, C, Graham, G. A, Green, S. F, Heck, P. R, Hoppe, P, Huth, J, Kearsley, A, Leroux, H, Marhas, K, Stadermann, F. J, and Teslich, N
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Aluminium foils were used on Stardust to stabilize the aerogel specimens in the modular collector tray. Part of these foils were fully exposed to the flux of cometary grains emanating from Wild 2. Because the exposed part of these foils had to be harvested before extraction of the aerogel, numerous foil strips some 1.7 mm wide and 13 or 33 mm long were generated during Stardusts's Preliminary Examination (PE). These strips are readily accommodated in their entirety in the sample chambers of modern SEMs, thus providing the opportunity to characterize in situ the size distribution and residue composition - employing EDS methods - of statistically more significant numbers of cometary dust particles compared to aerogel, the latter mandating extensive sample preparation. We describe here the analysis of nearly 300 impact craters and their implications for Wild 2 dust.
- Published
- 2007
26. Early diagenesis at and below Vera Rubin ridge, Gale crater, Mars.
- Author
-
Turner, S. M. R., Schwenzer, S. P., Bridges, J. C., Rampe, E. B., Bedford, C. C., Achilles, C. N., McAdam, A. C., Mangold, N., Hicks, L. J., Parnell, J., Fraeman, A. A., Reed, M. H., and Osinski, Gordon
- Subjects
GALE Crater (Mars) ,DIAGENESIS ,ALPHA rays ,MARS (Planet) ,GROUNDWATER flow ,HEMATITE - Abstract
Data returned by NASA's Mars Science Laboratory Curiosity rover showed evidence for abundant secondary materials, including Fe‐oxides, phyllosilicates, and an amorphous component on and below Vera Rubin ridge in the Murray formation. We used equilibrium thermochemical modeling to test the hypothesis that altered sediments were deposited as detrital igneous grains and subsequently underwent diagenesis. Chemical compositions of the Murray formations' altered components were calculated using data returned by the chemistry and mineralogy X‐ray diffraction instrument and the alpha particle X‐ray spectrometer on board Curiosity. Reaction of these alteration compositions with a CO2‐poor and oxidizing dilute aqueous solution was modeled at 25–100 °C, with 10–50% Fe3+/Fetot of the host rock. The modeled alteration assemblages included abundant phyllosilicates and Fe‐oxides at water‐to‐rock ratios >100. Modeled alteration abundances were directly comparable to observed abundances of hematite and clay minerals at a water‐to‐rock ratio of 10,000, for system temperatures of 50–100 °C with fluid pH ranging from 7.9 to 9.3. Modeling results suggest that the hematite–clay mineral assemblage is primarily the result of enhanced groundwater flow compared to the Sheepbed mudstone observed at Yellowknife Bay, and underwent further, localized alteration to produce the mineralogy observed by Curiosity. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
27. ALTERATION ASSEMBLAGES IN MARTIAN METEORITES: IMPLICATIONS FOR NEAR-SURFACE PROCESSES
- Author
-
Bridges, J. C., Catling, D. C., Saxton, J. M., Swindle, T. D., Lyon, I. C., and Grady, M. M.
- Published
- 2001
28. The Distribution of Peak‐Ring Basins on Mercury and Their Correlation With the High‐Mg/Si Terrane.
- Author
-
Hall, G. P., Martindale, A., Bridges, J. C., Nittler, L. R., and Bunce, E. J.
- Subjects
MERCURIAN atmosphere ,ROBUST statistics ,SPECTROMETERS ,MARTIAN craters ,MANTLE of Mars - Abstract
A catalog of mercurian craters that retain their central peak or peak‐ring structure was created to aid target prioritization for the Mercury Imaging X‐ray Spectrometer (MIXS), now on its way to Mercury aboard BepiColombo. Preliminary analysis of the MIXS crater catalog suggested a potential spatial correlation between an abnormally high spatial density of peak‐ring basins and a region of Mercury with elevated Mg/Si values (High‐Magnesium Terrane [HMT]). Robust statistical analysis of previously published crater catalogs confirmed that the spatial correlation exists, with an overall confidence level of 97.7%, specifically between peak‐ring basins and the HMT, delineated by a contour of Mg/Si = mean + 2σ = 0.648. Applying empirical impact cratering scaling laws to the 15 basins intersecting the HMT suggested that all have excavated material from ~13 to 20 km depth. None of the basins excavated mantle material, predicting instead that deep crustal material contains elevated Mg/Si material. However, five of the basins are predicted to have melted underlying mantle material, which might be a contributing factor in the elevated Mg/Si signature. In the absence of resolvable volcanic features associated with the rise of basaltic melts from the mantle, we favor excavation of deep crustal, high Mg/Si material. MIXS‐T is capable of spatially resolving individual features associated with peak‐ring basins and it is proposed that the 15 basins within the HMT are prioritized targets for MIXS, to test the hypothesis of exposed deep‐crustal material. Plain Language Summary: A catalog of craters that retain a central peak, or peak‐ring structure, was created in order to prioritize targets for the Mercury Imaging X‐ray Spectrometer on the BepiColombo mission. Preliminary analysis of this catalog revealed a potential spatial correlation between a region with an abnormally high spatial density of peak‐ring basins and a region with high Magnesium‐to‐Silicon ratios. Robust statistical analysis of previously published crater catalogs was used to confirm that the spatial correlation exists. Investigation of the depth of excavation for material ejected during impact indicates that the impacts within the main high Mg/Si terrane excavated deep crustal, rather than mantle, material of high Mg/Si ratio. Current X‐ray data do not spatially resolve the basin features to confirm these hypotheses but future observations by the Mercury Imaging X‐ray Spectrometer are capable of doing so. Key Points: There is a statistically strong spatial correlation between a group of 15 peak‐ring basins on Mercury and the high Mg/Si regionCrater uplift modeling and an absence of associated volcanic landforms, suggest excavation of deep crustal material with high Mg/SiThe High Mg/Si region will be a key target for Mercury Imaging X‐ray Spectrometer‐T on BepiColombo to test the model of deep crustal excavation [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
29. Mineral Surface and Fluid Chemistry in Nakhlite Analog Water-Rock Reactions
- Author
-
Miller, M. A., Susanne Petra Schwenzer, Bridges, J. C., Hicks, L. J., Ott, U., Filiberto, J., Chavez, C., Smith, H., Treiman, A. H., Kelley, S. P., Moore, J. M., Swindle, T. D., Bullock, M. A., and Mcintosh, R. A.
- Subjects
sense organs ,skin and connective tissue diseases - Abstract
We report on experiments with Mars analog materials under diagenetic conditions and find characteristic chemical surface changes in correspondence with the fluid conditions.
- Published
- 2018
30. Amazonian Hydrothermal Alteration Comparing Nakhlite Secondary Mineralogy to Water Rock Reaction Experiments
- Author
-
Bridges, J. C., Hicks, L. J., Miller, M. A., Susanne Petra Schwenzer, Ott, U., Filiberto, J., Chavez, C., Smith, H., Treiman, A. H., Kelley, S. P., Moore, J. M., Swindle, T. D., Bullock, M. A., Mcintosh, R. A., and Craig, P.
- Abstract
We report on results from experiments with Mars analog materials under diagenetic conditions. The mineralogical results of our experiments suggest that an important type of fluid alteration in the Amazonian may be short duration (e.g. less than 1 year) events from near neutral, dilute brines, that were able to exchange CO2 either directly, or via ice reservoirs, with the atmosphere.
- Published
- 2018
31. Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars
- Author
-
Frydenvang, J., Gasada, P. J., Hurowitz, J. A., Grotzinger, J. P, Wiens, R. C., Newsom, H. E., Edgett, K. S., Watkins, J., Bridges, J. C., Maurice, S, Fisk, M. R., Johnson, J. R., Rapin, W., Stein, N. T., Clegg, S. M., Schwenzer, Susanne, Bedford, Candice, Edwards, P., Mangold, N., Cousin, A., Anderson, R. B., Payre, V., Vaniman, D., Blake, D. F., Lanza, N. L., Gupta, S., Van Beek, J., Sautter, V, Meslin, P.-Y., Rice, M., Milliken, R., Gellert, R., Thompson, L., Clark, B. C., Sumner, D. Y., Fraeman, A. A., Kinch, K. M., Madsen, M. B., Mitrofanov, I. G., Jun, I., Calef, F., Vasavada, A. R., Los Alamos National Laboratory (LANL), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Department of Earth and Planetary Sciences [Albuquerque] (EPS), The University of New Mexico [Albuquerque], Malin Space Science Systems (MSSS), Department of Physics and Astronomy [Leicester], University of Leicester, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), College of Earth, Ocean and Atmospheric Sciences [Corvallis] (CEOAS), Oregon State University (OSU), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), The Open University Business School [Milton Keynes], The Open University [Milton Keynes] (OU), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), United States Geological Survey (USGS), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Planetary Science Institute [Tucson] (PSI), NASA Ames Research Center (ARC), Department of Earth Science and Engineering [Imperial College London], Imperial College London, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), Western Washington University (WWU), Department of Geological Sciences [Providence], Brown University, Department of Physics [Guelph], University of Guelph, University of New Brunswick (UNB), Space Science Institute [Boulder] (SSI), Department of Earth and Planetary Sciences [Univ California Davis] (EPS - UC Davis), University of California [Davis] (UC Davis), University of California (UC)-University of California (UC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Space Research Institute of the Russian Academy of Sciences (IKI), Russian Academy of Sciences [Moscow] (RAS), NASA MSL, Villum Fonden, Det Frie Forskningsrad (DFF), UKSA, UK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC), and UK Space Agency
- Subjects
[SDU]Sciences of the Universe [physics] ,Mars ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Silica ,MSL ,Gale crater ,Groundwater ,Diagenesis - Abstract
International audience; Diagenetic silica enrichment in fracture-associated halos that crosscut lacustrine and unconformably overlying aeolian sedimentary bedrock is observed on the lower north slope of Aeolis Mons in Gale crater, Mars. The diagenetic silica enrichment is colocated with detrital silica enrichment observed in the lacustrine bedrock yet extends into a considerably younger, unconformably draping aeolian sandstone, implying that diagenetic silica enrichment postdates the detrital silica enrichment. A causal connection between the detrital and diagenetic silica enrichment implies that water was present in the subsurface of Gale crater long after deposition of the lacustrine sediments and that it mobilized detrital amorphous silica and precipitated it along fractures in the overlying bedrock. Although absolute timing is uncertain, the observed diagenesis likely represents some of the most recent groundwater activity in Gale crater and suggests that the timescale of potential habitability extended considerably beyond the time that the lacustrine sediments of Aeolis Mons were deposited.
- Published
- 2017
- Full Text
- View/download PDF
32. Evolved Igneous Materials in Gale crater, Mars
- Author
-
Gasda, P. J., Bridges, J. C., Sautter, V., Thompson, L., Cousin, A., Mangold, N., Maurice, S., Wiens, R. C., Bedford, C., and Schwenzer, S. P.
- Published
- 2017
33. Geochemical Endmembers preserved in the fluviolacustrine sediments of Gale crater
- Author
-
Bedford, C. C., Bridges, J. C., Schwenzer, S. P., Wiens, R. C., Rampe, E. B., Frydenvang, J., and Gasda, P. J.
- Published
- 2017
34. Fe‐redox changes in Itokawa space‐weathered rims.
- Author
-
Hicks, L. J., Bridges, J. C., Noguchi, T., Miyake, A., Piercy, J. D., and Baker, S. H.
- Subjects
- *
SOLAR wind , *SOLAR flares , *TRANSMISSION electron microscopy , *ELECTRON spectroscopy , *X-ray absorption , *X-ray spectroscopy - Abstract
Synchrotron Fe‐K X‐ray absorption spectroscopy and transmission electron microscopy have been used to investigate the mineralogy and Fe‐redox variations in the space‐weathered (SW) rims of asteroidal samples. This study focuses on the FIB lift‐out sections from five Itokawa grains, returned by the Hayabusa spacecraft, including samples RB‐QD04‐0063, RB‐QD04‐0080, RB‐CV‐0011, RB‐CV‐0089, and RB‐CV‐0148. Each of the samples featured partially amorphized SW rims, caused by irradiation damage from implanted low mass solar wind ions, and the impacting of micrometeorites. Using bright‐field and HAADF‐STEM imaging, vesicular blistering and nanophase Fe metal (npFe0) particles were observed within grain rims, and solar flare tracks were observed in the substrate host grain, confirming the presence of SW zones. We use Fe‐K XANES mapping to investigate Fe‐redox changes between the host mineral and the SW zones. All SW zones measured show some increases in the ferric‐ferrous ratio (Fe3+/ΣFe) relative to their respective host grains, likely the result of the implanted solar wind H+ ions reacting with the segregated ferrous Fe in the surface material. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
35. The Chemostratigraphy of the Murray Formation and Role of Diagenesis at Vera Rubin Ridge in Gale Crater, Mars, as Observed by the ChemCam Instrument.
- Author
-
Frydenvang, J., Mangold, N., Wiens, R. C., Fraeman, A. A., Edgar, L. A., Fedo, C. M., L'Haridon, J., Bedford, C. C., Gupta, S., Grotzinger, J. P., Bridges, J. C., Clark, B. C., Rampe, E. B., Gasnault, O., Maurice, S., Gasda, P. J., Lanza, N. L., Olilla, A. M., Meslin, P.‐Y., and Payré, V.
- Subjects
MARTIAN craters ,CHEMOSTRATIGRAPHY ,DIAGENESIS ,HEMATITE ,CLAY minerals ,MARTIAN exploration ,MORPHOLOGY - Abstract
Geochemical results are presented from Curiosity's exploration of Vera Rubin ridge (VRR), in addition to the full chemostratigraphy of the predominantly lacustrine mudstone Murray formation up to and including VRR. VRR is a prominent ridge flanking Aeolis Mons (informally Mt. Sharp), the central mound in Gale crater, Mars, and was a key area of interest for the Mars Science Laboratory mission. ChemCam data show that VRR is overall geochemically similar to lower‐lying members of the Murray formation, even though the top of VRR shows a strong hematite spectral signature as observed from orbit. Although overall geochemically similar, VRR is characterized by a prominent decrease in Li abundance and Chemical Index of Alteration across the ridge. This decrease follows the morphology of the ridge rather than elevation and is inferred to reflect a nondepositionally controlled decrease in clay mineral abundance in VRR rocks. Additionally, a notable enrichment in Mn above baseline levels is observed on VRR. While not supporting a single model, the results suggest that VRR rocks were likely affected by multiple episodes of postdepositional groundwater interactions that made them more erosionally resistant than surrounding Murray rocks, thus resulting in the modern‐day ridge after subsequent erosion. Plain Language Summary: Results from the ChemCam instrument on Vera Rubin ridge (VRR) in Gale crater, Mars, are presented and compared with observations from similar rocks leading up to the ridge. VRR is a prominent ridge, flanking the central mound, Aeolis Mons, in Gale crater, Mars. The ridge attracted early attention because it displays strong iron‐oxide spectral signatures. Surprisingly, ChemCam data show that VRR rocks do not show an overall increase in iron abundance relative to the comparable bedrock analyzed for almost 300 m in elevation leading up to the ridge. While similar overall, some notable variations were observed on VRR relative to lower‐lying rocks. In particular, geochemical variations suggest a strong decrease in clay content on the ridge, above which, a notable enrichment in Mn is observed. No single geological process confidently explains all observations on the ridge. Rather, we think that VRR rocks underwent a series of interactions with groundwater that caused the rocks of VRR to become more resistant to erosion than their surroundings, thus emerging as a ridge as the rocks around them eroded. This likely implies that groundwater persisted in Gale crater even long after the disappearance of the ancient lake. Key Points: A decrease in Li and Chemical Index of Alteration, reflecting clay mineral content, is observed across Vera Rubin ridge (VRR)A Mn‐rich interval is observed stratigraphically above the decrease in clay mineral content on VRRVRR likely resulted from increased induration from late‐stage fluid interactions long after the lake environment in Gale crater ceased [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
36. NWA 10659: A CLAY-RICH NAKHLITE PAIR OF NWA 10153
- Author
-
Hicks, L. J., Bridges, J. C., Greenwood, R. C., and Franchi, I. A.
- Published
- 2016
37. Noble gas fractionation in hydrous rock alteration under diagenetic pressure and temperature conditions
- Author
-
Schwenzer, S. P., Bullock, M. A., Bridges, J. C., Chavez, C. L., Filiberto, J., Hicks, L. J., Kelley, S. P., Miller, M. A., Moore, J. M., Smith, H. D., Swindle, T. D., and Treiman, A. H.
- Published
- 2016
38. Calcium sulfate veins characterized by ChemCam/Curiosity at Gale crater, Mars
- Author
-
Nachon, M., Clegg, S. M., Mangold, N., Schroeder, S., Kah, L. C., Dromart, G., Ollila, A., Johnson, J. R., Oehler, D. Z., Bridges, J. C., Le Mouélic, S., Forni, O., Wiens, R. C., Anderson, R. B., Blaney, D. L., Bell, J. F., Clark, B., Cousin, A., Dyar, M. D., Ehlmann, B., Fabre, C., Gasnault, O., Grotzinger, J., Lasue, J., Lewin, E., Leveille, R., McLennan, S., Maurice, S., Meslin, P. -Y., Rapin, W., Rice, M., Squyres, S. W., Stack, K., Sumner, D. Y., Vaniman, D., Wellington, D., Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), The University of Tennessee [Knoxville], Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), The University of New Mexico [Albuquerque], Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), NASA Johnson Space Center (JSC), NASA, Space Research Centre [Leicester], University of Leicester, United States Geological Survey [Reston] (USGS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), Department of Astronomy of the Mount Holyoke College, Mount Holyoke College, Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), GeoRessources, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), Institut des Sciences de la Terre (ISTerre), Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry]), Canadian Space Agency (CSA), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Department of Astronomy [Ithaca], Cornell University [New York], Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley], University of California-University of California, Planetary Science Institute [Tucson] (PSI), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), and California Institute of Technology (CALTECH)-NASA
- Subjects
[SDU.STU]Sciences of the Universe [physics]/Earth Sciences - Abstract
International audience; The Curiosity rover has analyzed abundant light-toned fracture-fill material within the Yellowknife Bay sedimentary deposits. The ChemCam instrument, coupled with Mastcam and ChemCam/Remote Micro Imager images, was able to demonstrate that these fracture fills consist of calcium sulfate veins, many of which appear to be hydrated at a level expected for gypsum and bassanite. Anhydrite is locally present and is found in a location characterized by a nodular texture. An intricate assemblage of veins crosses the sediments, which were likely formed by precipitation from fluids circulating through fractures. The presence of veins throughout the entire similar to 5 m thick Yellowknife Bay sediments suggests that this process occurred well after sedimentation and cementation/lithification of those sediments. The sulfur-rich fluids may have originated in previously precipitated sulfate-rich layers, either before the deposition of the Sheepbed mudstones or from unrelated units such as the sulfates at the base of Mount Sharp. The occurrence of these veins after the episodes of deposition of fluvial sediments at the surface suggests persistent aqueous activity in relatively nonacidic conditions.
- Published
- 2014
- Full Text
- View/download PDF
39. The Petrochemistry of Jake_M: A Martian Mugearite
- Author
-
Stolper, E. M., Baker, M. B., Newcombe, M. E., Schmidt, M. E., Treiman, A. H., Cousin, A., Dyar, M. D., Fisk, M. R., Gellert, R., King, P. L., Leshin, L., Maurice, S., McLennan, S. M., Minitti, M. E., Perrett, G., Rowland, S., Sautter, V., Wiens, R. C., Kemppinen, O., Bridges, N., Johnson, J. R., Cremers, D., Bell, J. F., Edgar, L., Farmer, J., Godber, A., Wadhwa, M., Wellington, D., McEwan, I., Newman, C., Richardson, M., Charpentier, A., Peret, L., Blank, J., Weigle, G., Li, S., Milliken, R., Robertson, K., Sun, V., Edwards, C., Ehlmann, B., Farley, K., Griffes, J., Grotzinger, J., Miller, H., Pilorget, C., Rice, M., Siebach, K., Stack, K., Brunet, C., Hipkin, V., Leveille, R., Marchand, G., Sanchez, P. S., Favot, L., Cody, G., Steele, A., Fluckiger, L., Lees, D., Nefian, A., Martin, M., Gailhanou, M., Westall, F., Israel, G., Agard, C., Baroukh, J., Donny, C., Gaboriaud, A., Guillemot, P., Lafaille, V., Lorigny, E., Paillet, A., Perez, R., Saccoccio, M., Yana, C., Armiens-Aparicio, C., Rodriguez, J. C., Blazquez, I. C., Gomez, F. G., Gomez-Elvira, J., Hettrich, S., Malvitte, A. L., Jimenez, M. M., Martinez-Frias, J., Martin-Soler, J., Martin-Torres, F. J., Jurado, A. M., Mora-Sotomayor, L., Caro, G. M., Lopez, S. N., Peinado-Gonzalez, V., Pla-Garcia, J., Manfredi, J. A. R., Romeral-Planello, J. J., Fuentes, S. A. S., Martinez, E. S., Redondo, J. T., Urqui-O'Callaghan, R., Mier, M.-P. Z., Chipera, S., Lacour, J.-L., Mauchien, P., Sirven, J.-B., Manning, H., Fairen, A., Hayes, A., Joseph, J., Squyres, S., Sullivan, R., Thomas, P., Dupont, A., Lundberg, A., Melikechi, N., Mezzacappa, A., DeMarines, J., Grinspoon, D., Reitz, G., Prats, B., Atlaskin, E., Genzer, M., Harri, A.-M., Haukka, H., Kahanpaa, H., Kauhanen, J., Paton, M., Polkko, J., Schmidt, W., Siili, T., Fabre, C., Wray, J., Wilhelm, M. B., Poitrasson, F., Patel, K., Gorevan, S., Indyk, S., Paulsen, G., Gupta, S., Bish, D., Schieber, J., Gondet, B., Langevin, Y., Geffroy, C., Baratoux, D., Berger, G., Cros, A., d'Uston, C., Forni, O., Gasnault, O., Lasue, J., Lee, Q.-M., Meslin, P.-Y., Pallier, E., Parot, Y., Pinet, P., Schroder, S., Toplis, M., Lewin, E., Brunner, W., Heydari, E., Achilles, C., Oehler, D., Sutter, B., Cabane, M., Coscia, D., Szopa, C., Teinturier, S., Dromart, G., Robert, F., Le Mouelic, S., Mangold, N., Nachon, M., Buch, A., Stalport, F., Coll, P., Francois, P., Raulin, F., Cameron, J., Clegg, S., DeLapp, D., Dingler, R., Jackson, R. S., Johnstone, S., Lanza, N., Little, C., Nelson, T., Williams, R. B., Kirkland, L., Baker, B., Cantor, B., Caplinger, M., Davis, S., Duston, B., Edgett, K., Fay, D., Hardgrove, C., Harker, D., Herrera, P., Jensen, E., Kennedy, M. R., Krezoski, G., Krysak, D., Lipkaman, L., Malin, M., McCartney, E., McNair, S., Nixon, B., Posiolova, L., Ravine, M., Salamon, A., Saper, L., Stoiber, K., Supulver, K., Van Beek, J., Van Beek, T., Zimdar, R., French, K. L., Iagnemma, K., Miller, K., Summons, R., Goesmann, F., Goetz, W., Hviid, S., Johnson, M., Lefavor, M., Lyness, E., Breves, E., Fassett, C., Blake, D. F., Bristow, T., DesMarais, D., Edwards, L., Haberle, R., Hoehler, T., Hollingsworth, J., Kahre, M., Keely, L., McKay, C., Bleacher, L., Brinckerhoff, W., Choi, D., Conrad, P., Dworkin, J. P., Eigenbrode, J., Floyd, M., Freissinet, C., Garvin, J., Glavin, D., Harpold, D., Mahaffy, P., Martin, D. K., McAdam, A., Pavlov, A., Raaen, E., Smith, M. D., Stern, J., Tan, F., Trainer, M., Meyer, M., Posner, A., Voytek, M., Anderson, R. C., Aubrey, A., Beegle, L. W., Behar, A., Blaney, D., Brinza, D., Calef, F., Christensen, L., Crisp, J., DeFlores, L., Feldman, J., Feldman, S., Flesch, G., Hurowitz, J., Jun, I., Keymeulen, D., Maki, J., Mischna, M., Morookian, J. M., Parker, T., Pavri, B., Schoppers, M., Sengstacken, A., Simmonds, J. J., Spanovich, N., Juarez, M. d. l. T., Vasavada, A., Webster, C. R., Yen, A., Archer, P. D., Cucinotta, F., Jones, J. H., Ming, D., Morris, R. V., Niles, P., Rampe, E., Nolan, T., Radziemski, L., Barraclough, B., Bender, S., Berman, D., Dobrea, E. N., Tokar, R., Vaniman, D., Williams, R. M. E., Yingst, A., Lewis, K., Cleghorn, T., Huntress, W., Manhes, G., Hudgins, J., Olson, T., Stewart, N., Sarrazin, P., Grant, J., Vicenzi, E., Wilson, S. A., Bullock, M., Ehresmann, B., Hamilton, V., Hassler, D., Peterson, J., Rafkin, S., Zeitlin, C., Fedosov, F., Golovin, D., Karpushkina, N., Kozyrev, A., Litvak, M., Malakhov, A., Mitrofanov, I., Mokrousov, M., Nikiforov, S., Prokhorov, V., Sanin, A., Tretyakov, V., Varenikov, A., Vostrukhin, A., Kuzmin, R., Clark, B., Wolff, M., Botta, O., Drake, D., Bean, K., Lemmon, M., Schwenzer, S. P., Anderson, R. B., Herkenhoff, K., Lee, E. M., Sucharski, R., Hernandez, M. A. d. P., Avalos, J. J. B., Ramos, M., Jones, A., Kim, M.-H., Malespin, C., Plante, I., Muller, J.-P., Navarro-Gonzalez, R., Ewing, R., Boynton, W., Downs, R., Fitzgibbon, M., Harshman, K., Morrison, S., Dietrich, W., Kortmann, O., Palucis, M., Sumner, D. Y., Williams, A., Lugmair, G., Wilson, M. A., Rubin, D., Jakosky, B., Balic-Zunic, T., Frydenvang, J., Jensen, J. K., Kinch, K., Koefoed, A., Madsen, M. B., Stipp, S. L. S., Boyd, N., Campbell, J. L., Pradler, I., VanBommel, S., Jacob, S., Owen, T., Savijarvi, H., Boehm, E., Bottcher, S., Burmeister, S., Guo, J., Kohler, J., Garcia, C. M., Mueller-Mellin, R., Wimmer-Schweingruber, R., Bridges, J. C., McConnochie, T., Benna, M., Franz, H., Bower, H., Brunner, A., Blau, H., Boucher, T., Carmosino, M., Atreya, S., Elliott, H., Halleaux, D., Renno, N., Wong, M., Pepin, R., Elliott, B., Spray, J., Thompson, L., Gordon, S., Newsom, H., Ollila, A., Williams, J., Vasconcelos, P., Bentz, J., Nealson, K., Popa, R., Kah, L. C., Moersch, J., Tate, C., Day, M., Kocurek, G., Hallet, B., Sletten, R., Francis, R., McCullough, E., Cloutis, E., ten Kate, I. L., Arvidson, R., Fraeman, A., Scholes, D., Slavney, S., Stein, T., Ward, J., Berger, J., Moores, J. E., GeoRessources, Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), California Institute of Technology (CALTECH), Department of Earth Sciences [St. Catharines], Brock University [Canada], Lunar and Planetary Institute [Houston] (LPI), Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Mount Holyoke College, Oregon State University (OSU), University of Guelph, Research School of Earth Sciences [Canberra] (RSES), Australian National University (ANU), Rensselaer Polytechnic Institute (RPI), State University of New York (SUNY), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), University of Hawaii, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut de recherche pour le développement [IRD] : UR206-Centre National de la Recherche Scientifique (CNRS), MSL Science Team, Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), and Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Curiosity rover ,Geochemistry ,Mars ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,010502 geochemistry & geophysics ,01 natural sciences ,Jake_M: a martian mugearite ,chemistry.chemical_compound ,Nepheline ,MSL ,Chemical composition ,0105 earth and related environmental sciences ,Martian ,Phonolite ,Multidisciplinary ,Fractional crystallization (geology) ,petrochemistry ,Igneous rock ,Planetary science ,MSL Mars Petrochemistry ,chemistry ,13. Climate action ,Petrochemistry ,Geology ,[SDU.STU.MI]Sciences of the Universe [physics]/Earth Sciences/Mineralogy - Abstract
International audience; "Jake_M," the first rock analyzed by the Alpha Particle X-ray Spectrometer instrument on the Curiosity rover, differs substantially in chemical composition from other known martian igneous rocks: It is alkaline (>15% normative nepheline) and relatively fractionated. Jake_M is compositionally similar to terrestrial mugearites, a rock type typically found at ocean islands and continental rifts. By analogy with these comparable terrestrial rocks, Jake_M could have been produced by extensive fractional crystallization of a primary alkaline or transitional magma at elevated pressure, with or without elevated water contents. The discovery of Jake_M suggests that alkaline magmas may be more abundant on Mars than on Earth and that Curiosity could encounter even more fractionated alkaline rocks (for example, phonolites and trachytes).
- Published
- 2013
- Full Text
- View/download PDF
40. Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover
- Author
-
Leshin, L. A., Mahaffy, P. R., Webster, C. R., Cabane, M., Coll, P., Conrad, P. G., Archer, P. D., Atreya, S. K., Brunner, A. E., Buch, A., Eigenbrode, J. L., Flesch, G. J., Franz, H. B., Freissinet, C., Glavin, D. P., McAdam, A. C., Miller, K. E., Ming, D. W., Morris, R. V., Navarro-Gonzalez, R., Niles, P. B., Owen, T., Pepin, R. O., Squyres, S., Steele, A., Stern, J. C., Summons, R. E., Sumner, D. Y., Sutter, B., Szopa, C., Teinturier, S., Trainer, M. G., Wray, J. J., Grotzinger, J. P., Kemppinen, O., Bridges, N., Johnson, J. R., Minitti, M., Cremers, D., Bell, J. F., Edgar, L., Farmer, J., Godber, A., Wadhwa, M., Wellington, D., McEwan, I., Newman, C., Richardson, M., Charpentier, A., Peret, L., King, P., Blank, J., Weigle, G., Schmidt, M., Li, S., Milliken, R., Robertson, K., Sun, V., Baker, M., Edwards, C., Ehlmann, B., Farley, K., Griffes, J., Miller, H., Newcombe, M., Pilorget, C., Rice, M., Siebach, K., Stack, K., Stolper, E., Brunet, C., Hipkin, V., Leveille, R., Marchand, G., Sanchez, P. S., Favot, L., Cody, G., Fluckiger, L., Lees, D., Nefian, A., Martin, M., Gailhanou, M., Westall, F., Israel, G., Agard, C., Baroukh, J., Donny, C., Gaboriaud, A., Guillemot, P., Lafaille, V., Lorigny, E., Paillet, A., Perez, R., Saccoccio, M., Yana, C., Armiens-Aparicio, C., Rodriguez, J. C., Blazquez, I. C., Gomez, F. G., Gomez-Elvira, J., Hettrich, S., Malvitte, A. L., Jimenez, M. M., Martinez-Frias, J., Martin-Soler, J., Martin-Torres, F. J., Jurado, A. M., Mora-Sotomayor, L., Caro, G. M., Lopez, S. N., Peinado-Gonzalez, V., Pla-Garcia, J., Manfredi, J. A. R., Romeral-Planello, J. J., Fuentes, S. A. S., Martinez, E. S., Redondo, J. T., Urqui-O'Callaghan, R., Mier, M.-P. Z., Chipera, S., Lacour, J.-L., Mauchien, P., Sirven, J.-B., Manning, H., Fairen, A., Hayes, A., Joseph, J., Sullivan, R., Thomas, P., Dupont, A., Lundberg, A., Melikechi, N., Mezzacappa, A., DeMarines, J., Grinspoon, D., Reitz, G., Prats, B., Atlaskin, E., Genzer, M., Harri, A.-M., Haukka, H., Kahanpaa, H., Kauhanen, J., Paton, M., Polkko, J., Schmidt, W., Siili, T., Fabre, C., Wilhelm, M. B., Poitrasson, F., Patel, K., Gorevan, S., Indyk, S., Paulsen, G., Gupta, S., Bish, D., Schieber, J., Gondet, B., Langevin, Y., Geffroy, C., Baratoux, D., Berger, G., Cros, A., d'Uston, C., Forni, O., Gasnault, O., Lasue, J., Lee, Q.-M., Maurice, S., Meslin, P.-Y., Pallier, E., Parot, Y., Pinet, P., Schroder, S., Toplis, M., Lewin, E., Brunner, W., Heydari, E., Achilles, C., Oehler, D., Coscia, D., Dromart, G., Robert, F., Sautter, V., Le Mouelic, S., Mangold, N., Nachon, M., Stalport, F., Francois, P., Raulin, F., Cameron, J., Clegg, S., Cousin, A., DeLapp, D., Dingler, R., Jackson, R. S., Johnstone, S., Lanza, N., Little, C., Nelson, T., Wiens, R. C., Williams, R. B., Jones, A., Kirkland, L., Treiman, A., Baker, B., Cantor, B., Caplinger, M., Davis, S., Duston, B., Edgett, K., Fay, D., Hardgrove, C., Harker, D., Herrera, P., Jensen, E., Kennedy, M. R., Krezoski, G., Krysak, D., Lipkaman, L., Malin, M., McCartney, E., McNair, S., Nixon, B., Posiolova, L., Ravine, M., Salamon, A., Saper, L., Stoiber, K., Supulver, K., Van Beek, J., Van Beek, T., Zimdar, R., French, K. L., Iagnemma, K., Goesmann, F., Goetz, W., Hviid, S., Johnson, M., Lefavor, M., Lyness, E., Breves, E., Dyar, M. D., Fassett, C., Blake, D. F., Bristow, T., DesMarais, D., Edwards, L., Haberle, R., Hoehler, T., Hollingsworth, J., Kahre, M., Keely, L., McKay, C., Bleacher, L., Brinckerhoff, W., Choi, D., Dworkin, J. P., Floyd, M., Garvin, J., Harpold, D., Martin, D. K., Pavlov, A., Raaen, E., Smith, M. D., Tan, F., Meyer, M., Posner, A., Voytek, M., Anderson, R. C., Aubrey, A., Beegle, L. W., Behar, A., Blaney, D., Brinza, D., Calef, F., Christensen, L., Crisp, J. A., DeFlores, L., Feldman, J., Feldman, S., Hurowitz, J., Jun, I., Keymeulen, D., Maki, J., Mischna, M., Morookian, J. M., Parker, T., Pavri, B., Schoppers, M., Sengstacken, A., Simmonds, J. J., Spanovich, N., Juarez, M. d. l. T., Vasavada, A. R., Yen, A., Cucinotta, F., Jones, J. H., Rampe, E., Nolan, T., Fisk, M., Radziemski, L., Barraclough, B., Bender, S., Berman, D., Dobrea, E. N., Tokar, R., Vaniman, D., Williams, R. M. E., Yingst, A., Lewis, K., Cleghorn, T., Huntress, W., Manhes, G., Hudgins, J., Olson, T., Stewart, N., Sarrazin, P., Grant, J., Vicenzi, E., Wilson, S. A., Bullock, M., Ehresmann, B., Hamilton, V., Hassler, D., Peterson, J., Rafkin, S., Zeitlin, C., Fedosov, F., Golovin, D., Karpushkina, N., Kozyrev, A., Litvak, M., Malakhov, A., Mitrofanov, I., Mokrousov, M., Nikiforov, S., Prokhorov, V., Sanin, A., Tretyakov, V., Varenikov, A., Vostrukhin, A., Kuzmin, R., Clark, B., Wolff, M., McLennan, S., Botta, O., Drake, D., Bean, K., Lemmon, M., Schwenzer, S. P., Anderson, R. B., Herkenhoff, K., Lee, E. M., Sucharski, R., Hernandez, M. A. d. P., Avalos, J. J. B., Ramos, M., Kim, M.-H., Malespin, C., Plante, I., Muller, J.-P., Ewing, R., Boynton, W., Downs, R., Fitzgibbon, M., Harshman, K., Morrison, S., Dietrich, W., Kortmann, O., Palucis, M., Williams, A., Lugmair, G., Wilson, M. A., Rubin, D., Jakosky, B., Balic-Zunic, T., Frydenvang, J., Jensen, J. K., Kinch, K., Koefoed, A., Madsen, M. B., Stipp, S. L. S., Boyd, N., Campbell, J. L., Gellert, R., Perrett, G., Pradler, I., VanBommel, S., Jacob, S., Rowland, S., Savijarvi, H., Boehm, E., Bottcher, S., Burmeister, S., Guo, J., Kohler, J., Garcia, C. M., Mueller-Mellin, R., Wimmer-Schweingruber, R., Bridges, J. C., McConnochie, T., Benna, M., Bower, H., Blau, H., Boucher, T., Carmosino, M., Elliott, H., Halleaux, D., Renno, N., Wong, M., Elliott, B., Spray, J., Thompson, L., Gordon, S., Newsom, H., Ollila, A., Williams, J., Vasconcelos, P., Bentz, J., Nealson, K., Popa, R., Kah, L. C., Moersch, J., Tate, C., Day, M., Kocurek, G., Hallet, B., Sletten, R., Francis, R., McCullough, E., Cloutis, E., ten Kate, I. L., Arvidson, R., Fraeman, A., Scholes, D., Slavney, S., Stein, T., Ward, J., Berger, J., Moores, J. E., Department of Earth and Environmental Sciences [Troy, NY], Rensselaer Polytechnic Institute (RPI), NASA Goddard Space Flight Center (GSFC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Astromaterials Research and Exploration Science (ARES), NASA Johnson Space Center (JSC), NASA-NASA, Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Department of Astronomy [College Park], University of Maryland [College Park], University of Maryland System-University of Maryland System, Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Center for Research and Exploration in Space Science and Technology [GSFC] (CRESST), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Massachusetts Institute of Technology (MIT), Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Institute for Astronomy [Honolulu], University of Hawai‘i [Mānoa] (UHM), School of Physics and Astronomy [Minneapolis], University of Minnesota [Twin Cities] (UMN), University of Minnesota System-University of Minnesota System, Cornell University [New York], Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science, University of California [Davis] (UC Davis), University of California (UC), Jacobs Technology ESCG, Institut Pierre-Simon-Laplace (IPSL), École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), School of Earth and Atmospheric Sciences [Atlanta], Georgia Institute of Technology [Atlanta], Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), NWO-NSO: The role of perchlorates in the preservation of organic compounds on Mars, Petrology, California Institute of Technology (CALTECH)-NASA, Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), Carnegie Institution for Science [Washington], University of California, École normale supérieure - Paris (ENS Paris), IMPEC - LATMOS, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), University of Minnesota [Twin Cities], Cornell University, and École normale supérieure - Paris (ENS Paris)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National d'Études Spatiales [Toulouse] (CNES)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)
- Subjects
Martian ,Multidisciplinary ,010504 meteorology & atmospheric sciences ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Thermal decomposition ,Curiosity rover ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,chemistry.chemical_element ,Mars ,organic analysis ,Mars Exploration Program ,01 natural sciences ,Astrobiology ,chemistry.chemical_compound ,chemistry ,13. Climate action ,Isotopes of carbon ,Rocknest ,0103 physical sciences ,Sample Analysis at Mars ,Carbonate ,MSL Mars Volatiles Isotopes Organics Soil Gale Crater ,010303 astronomy & astrophysics ,Carbon ,0105 earth and related environmental sciences - Abstract
Samples from the Rocknest aeolian deposit were heated to ~835°C under helium flow and evolved gases analyzed by Curiosity’s Sample Analysis at Mars instrument suite. H 2 O, SO 2 , CO 2 , and O 2 were the major gases released. Water abundance (1.5 to 3 weight percent) and release temperature suggest that H 2 O is bound within an amorphous component of the sample. Decomposition of fine-grained Fe or Mg carbonate is the likely source of much of the evolved CO 2 . Evolved O 2 is coincident with the release of Cl, suggesting that oxygen is produced from thermal decomposition of an oxychloride compound. Elevated δD values are consistent with recent atmospheric exchange. Carbon isotopes indicate multiple carbon sources in the fines. Several simple organic compounds were detected, but they are not definitively martian in origin.
- Published
- 2013
- Full Text
- View/download PDF
41. Oxygen isotope analysis of a chondrule-like Wild 2 Terminal Particle using NanoSIMS
- Author
-
Starkey, N. A., Franchi, I. A., Bridges, J. C., Changela, H. G., and Hicks, L. J.
- Abstract
Oxygen isotopes provide a key tool in determining origins and links of diverse solar system materials. SIMS analyses of terminal particles returned from comet Wild 2 with sufficient analytical precision for useful comparison to meteorites are very limited. Generally, analyses of grains have used potted butts or single grains pressed into gold in order to provide sufficient sample thickness to analyse with high current probes. At most, only one potted butt can exist for any characterized terminal particle and in many cases it is required for other analytical techniques or no longer contains cometary material. Here we utilize the more readily available microtomed sections as a means of extracting useful oxygen isotopic information. NanoSIMS 50L isotope imaging mode allows the material available for analysis from these very thin sections (≈70 nm) to be maximized, although analytical uncertainty reported by others using this technique is large.
- Published
- 2011
42. Iron Oxide Grains in Stardust Track 121 Grains as Evidence of Comet Wild 2 Hydrothermal Alteration
- Author
-
Bridges, J. C., Changela, H. G., Carpenter, J. D., and Franchi, I. A.
- Subjects
food and beverages - Abstract
Stardust Track 121 terminal grains contain Fe-oxide. These are consistent with the presence of hydrothermal alteration on the Comet Wild 2 parent body.
- Published
- 2008
43. Sedimentary rocks in Bequerel crater: origin as polar layered deposits during high obliquity
- Author
-
Bridges, J. C., Kim, J-R, Tragheim, D. G., Muller, J-P, Matthew Balme, and Pullan, D.
- Abstract
not available.
- Published
- 2008
44. SEM-EDS analyses of small craters in stardust aluminium foils: implications for the Wild-2 dust distribution
- Author
-
Borg, J., Hörz, F., Bridges, J. C., Burchell, M. J., Djouadi, Z., Floss, C., Graham, G. A., Simon F. Green, Heck, P. R., Hoppe, P., Huth, J., Kearsley, A., Leroux, H., Marhas, K., Stadermann, F. J., and Teslich, N.
- Abstract
Implications for the Wild-2 dust distribution of the statistical results obtained by SEM-EDS from nearly 300 impact craters on aluminium foils of the Stardust sample tray assembly.
- Published
- 2007
45. Stardust microcrater residue compositional groups
- Author
-
Bridges, J. C., Franchi, I. A, and Green, S. F.
- Abstract
Compositional groups are defined in residue from Stardust craters (1-9 Dc) by qualitative EDS. These compositional groups are being further studied by a FIB-SEM technique to determine representative residue compositions.
- Published
- 2007
46. Luminescence dating on Mars: OSL characteristics of Martian analogue materials and GCR dosimetry
- Author
-
Jain, M., Andersen, C. E., Bøtter-Jensen, L., Andrew Murray, Bridges, J. C., and Haack, H.
- Published
- 2006
47. Magnetite in Comet Wild 2: Evidence for parent body aqueous alteration.
- Author
-
Hicks, L. J., MacArthur, J. L., Bridges, J. C., Price, M. C., Wickham‐Eade, J. E., Burchell, M. J., Hansford, G. M., Butterworth, A. L., Gurman, S. J., and Baker, S. H.
- Subjects
CRYSTAL structure ,MAGNETITE ,MAGNETITE synthesis ,X-ray diffraction ,SYNCHROTRONS - Abstract
The mineralogy of comet 81P/Wild 2 particles, collected in aerogel by the Stardust mission, has been determined using synchrotron Fe-K X-ray absorption spectroscopy with in situ transmission XRD and X-ray fluorescence, plus complementary microRaman analyses. Our investigation focuses on the terminal grains of eight Stardust tracks: C2112,4,170,0,0; C2045,2,176,0,0; C2045,3,177,0,0; C2045,4,178,0,0; C2065,4,187,0,0; C2098,4,188,0,0; C2119,4,189,0,0; and C2119,5,190,0,0. Three terminal grains have been identified as near pure magnetite Fe
3 O4 . The presence of magnetite shows affinities between the Wild 2 mineral assemblage and carbonaceous chondrites, and probably resulted from hydrothermal alteration of the coexisting FeNi and ferromagnesian silicates in the cometary parent body. In order to further explore this hypothesis, powdered material from a CR2 meteorite ( NWA 10256) was shot into the aerogel at 6.1 km s−1 , using a light-gas gun, and keystones were then prepared in the same way as the Stardust keystones. Using similar analysis techniques to the eight Stardust tracks, a CR2 magnetite terminal grain establishes the likelihood of preserving magnetite during capture in silica aerogel. [ABSTRACT FROM AUTHOR]- Published
- 2017
- Full Text
- View/download PDF
48. The future of Stardust science.
- Author
-
Westphal, A. J., Bridges, J. C., Brownlee, D. E., Butterworth, A. L., De Gregorio, B. T., Dominguez, G., Flynn, G. J., Gainsforth, Z., Ishii, H. A., Joswiak, D., Nittler, L. R., Ogliore, R. C., Palma, R., Pepin, R. O., Stephan, T., and Zolensky, M. E.
- Subjects
- *
KUIPER belt , *OORT Cloud , *ASTEROIDS , *CRYOGENICS - Abstract
Recent observations indicate that >99% of the small bodies in the solar system reside in its outer reaches-in the Kuiper Belt and Oort Cloud. Kuiper Belt bodies are probably the best-preserved representatives of the icy planetesimals that dominated the bulk of the solid mass in the early solar system. They likely contain preserved materials inherited from the protosolar cloud, held in cryogenic storage since the formation of the solar system. Despite their importance, they are relatively underrepresented in our extraterrestrial sample collections by many orders of magnitude (~1013 by mass) as compared with the asteroids, represented by meteorites, which are composed of materials that have generally been strongly altered by thermal and aqueous processes. We have only begun to scratch the surface in understanding Kuiper Belt objects, but it is already clear that the very limited samples of them that we have in our laboratories hold the promise of dramatically expanding our understanding of the formation of the solar system. Stardust returned the first samples from a known small solar system body, the Jupiter-family comet 81P/Wild 2, and, in a separate collector, the first solid samples from the local interstellar medium. The first decade of Stardust research resulted in more than 142 peer-reviewed publications, including 15 papers in Science. Analyses of these amazing samples continue to yield unexpected discoveries and to raise new questions about the history of the early solar system. We identify nine high-priority scientific objectives for future Stardust analyses that address important unsolved problems in planetary science. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
49. The PanCam Instrument for the ExoMars Rover.
- Author
-
Coates, A. J., Jaumann, R., Griffiths, A. D., Leff, C. E., Schmitz, N., Josset, J.-L., Paar, G., Gunn, M., Hauber, E., Cousins, C. R., Cross, R. E., Grindrod, P., Bridges, J. C., Balme, M., Gupta, S., Crawford, I. A., Irwin, P., Stabbins, R., Tirsch, D., and Vago, J. L.
- Published
- 2017
- Full Text
- View/download PDF
50. Aqueous alteration of Nakhlites: implications for water on Mars
- Author
-
Grady, Monica M., Anand, M., Bridges, J. C., Pearson, V. K., Franchi, I. A., and Wright, I. P.
- Published
- 2005
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.