47 results on '"Coscia, David"'
Search Results
2. The application of TMAH thermochemolysis on the detection of nucleosides: Applications for the SAM and MOMA instruments
- Author
-
He, Yuanyuan, Buch, Arnaud, Szopa, Cyril, Williams, Amy, Freissinet, Caroline, Guzman, Melissa, Millan, Maëva, Coscia, David, Bonnet, Jean-Yves, and Cabane, Michel
- Published
- 2022
- Full Text
- View/download PDF
3. Development and Integration of an Ultraminiaturized Gas Chromatograph Prototype Based on Lab-on-a-Chip Microelectromechanical Systems for Space Exploration Missions.
- Author
-
Rizk-Bigourd, Malak, Szopa, Cyril, Coscia, David, Pineau, Jean-Pierre, Guerrini, Vincent, Ferreira, Frederic, Bertrand, Fabrice, Philippart, Arnaud, Boco, Audrey, Rioland, Guillaume, Peulon-Agasse, Valérie, Buch, Arnaud, and Cardinael, Pascal
- Published
- 2024
- Full Text
- View/download PDF
4. The search for organic compounds with TMAH thermochemolysis: From Earth analyses to space exploration experiments
- Author
-
He, Yuanyuan, Buch, Arnaud, Szopa, Cyril, Williams, Amy J., Millan, Maëva, Guzman, Melissa, Freissinet, Caroline, Malespin, Charles, Glavin, Daniel P., Eigenbrode, Jennifer L., Coscia, David, Teinturier, Samuel, Pin lu, Cabane, M., and Mahaffy, Paul R.
- Published
- 2020
- Full Text
- View/download PDF
5. Extremophile Metabolite Study to Detect Potential Biosignatures and Interpret Future Gas Chromatography-Mass spectrometry Ocean Worlds in situ analysis (e.g. Dragonfly mission with its DraMS instrument and EuropaLander with its EMILI instrument)
- Author
-
Boulesteix, David, Buch, Arnaud, Szopa, Cyril, He, Yuanyuan, Freissinet, Caroline, Coscia, David, and Cardon, Catherine
- Subjects
[SDU] Sciences of the Universe [physics] - Abstract
One of the objectives of the various space exploration missions carrying GC-MS (Gas chromatography coupled to mass spectrometry) instruments is the search for traces of life, in particular through the detection of biomolecules or bioindicators. This is for example the case of missions to Mars such as Mars Science laboratory and the SAM instrument but also the future ExoMars mission with the MOMA instrument. Up to date, we are looking for primary metabolites (such as fatty acids, amino acids or nucleobases) (Engel et al., 2001; Martins et al., 2008). Other organic molecules (produced by organisms) should also be considered for future space explorations of extant or present trace of life. More than 3.5 billion years ago, Mars had a similar weather and surface (in terms of geochemical composition, geodynamics, or resources necessary to define a planetary habitability (e.g. water, energy sources, complex organic molecules)) (Sterns et al., 2022; Raulin-Cerceau et al., 2004). Thus, the primordial soup necessary for the origin and evolution of life might be the same as on the Early-Earth. Therefore, if life exists or have existed on Mars, the primary cells produced on Mars might be similar to those found on Earth, and their (primary and secondary) metabolites might be identic. Based on this hypothesis, we have searched for biosignatures and bioindicators in extremophile cultures found in environmental Mars analogues, which may resist to the different stress measured on Mars (namely irradiation, salt matrices, low temperatures, water shortage, etc...): Chroococcidiopsis cubana and Halobacterium salinarum (Caiola et al., 2007; Ruginescu et al., 2019). To compare with a previous study conducted on these extremophiles with the TMAH thermochemolysis protocol, we conducted a parallel study with the two other wet chemistry protocols ahead the GC-MS analysis onboard the SAM , and the MOMA instruments, namely DMF-DMA and MTBSTFA derivatizations (Freissinet et al., 2010; Brault, 2016). The current study might help to understand which organic molecules are detectable with our space protocols and to construct a decisional tree for future in situ Mars results’ interpretations as it was a success analyzing ancient life fossils in Atacama desert (Crits-Cristopher et al., 2013; Santiago et al., 2018).
- Published
- 2022
6. Influence of the secondary X-Rays on the organic matter at Mars’ near-surface
- Author
-
Buch, Arnaud, Szopa, Cyril, Freissinet, Caroline, Boulesteix, David, Stalport, Fabien, Nowak, Sophie, Bonnet, Jean-Yves, Chaouche, Naïla, Gilbert, Pierre, Coscia, David, and Cardon, Catherine
- Subjects
[SDU] Sciences of the Universe [physics] - Abstract
In 2015 the SAM experiment on board the curiosity rover discovered the first organic molecule endogenous to Mars. This molecule is certainly the result of the reaction of a still unknown molecule with the perchlorates/chlorates present in the Martian soil [1]. Since then, other organics have been discovered: sulfur and nitrogen bearing molecules [2-3] and chlorohydrocarbons [4]. Those chlorohydrocarbons compounds could be generated by a reaction which may occur at Mars’ near-surface induced by the harsh radiative environment, e.g. direct radiation (UV, high energy X- and γ-rays) and secondary photons produced by the interaction of direct radiations with the martian regolith (low energy secondary X-rays). Additionally, organic molecules are detected in lower concentration than expected from modelling [5], suggesting organic matter degradation over geological time. Our team thus investigates the influence of radiations on organic molecules under simulated Mars’ surface conditions. In the present study, we mainly focused on the action of X-rays (hard and soft X-ray) on various organic molecules, the chiral amino acids L-alanine and L-phenylalanine and two potential precursors of chlorobenzene, benzoic and trimesic acids. These molecules were irradiated pure but also in contact with calcium perchlorate in order to better understand the roles in perchlorates present in the Martian soil. We also studied the molecules within mineral matrices in the form of pellets, in absence and in presence of perchlorates (max 3 % weight).
- Published
- 2022
7. In situ sample treatment on Titan, aboard the DraMS experiment
- Author
-
Buch, Arnaud, Boulesteix, David, Szopa, Cyril, Freissinet, Caroline, Stern, Jennifer C., Teinturier, Samuel, Coscia, David, Stalport, Fabien, Humeau, Olivier, Corbel, Charlotte, Grand, Noël, Trainer, Melissa G., and Cardon, Catherine
- Subjects
[SDU] Sciences of the Universe [physics] - Abstract
In 2027 NASA will launch a new exobiological mission to Titan: Dragonfly [1,2]. Onboard the DraMS instrument will aim to map the organic compounds present on the surface of the satellite and to study the fate of this organic matter towards a potential prebiotic chemistry [3,4]. To do so, DraMS is equipped with a gas chromatography instrument coupled to a mass spectrometer (GC-MS). In order to be analyzed, the samples taken by the DrACO module will be placed in an oven which will allow the sample treatment. Different techniques of sample treatment can be used: pyrolysis, derivatization and thermochemolysis. Pyrolysis allows to volatilize efficiently the organic content of the sample but has the disadvantage of degrading the original content. The derivatization allows to avoid the degradation of the labile molecules while allowing their volatilization. This derivatization will be realized thanks to the use of DMF-DMA (dimethylformamide dimethylacetal) [5]. This reagent allows to keep the asymmetry centers of the labile molecules while volatilizing them and thus allowing the separation of their enantiomers on a chiral column of Chirasil-Dex type. The last technique, thermochemolysis, is dedicated to more refractory compounds. It combines both pyrolysis and derivatization techniques by using TMAH (tetramethylammonium hydroxide) or TMSH (trimethylsulfonium hydroxide) and temperatures of about 500°C [6].In order to optimize the treatment of DraMS samples, we studied the impact of each derivatization and thermochemolysis reagent on the identified organic targets (amino acids, nucleic bases, fatty acids, etc.) as well as using Titan analogues synthesized at LATMOS (UVSQ, France): Tholins [7].
- Published
- 2022
8. The marbll experiment: towards a martian wind lidar
- Author
-
Määttänen Anni, Ravetta François, Montmessin Franck, Bruneau Didier, Mariscal Jean-François, Van Haecke Mathilde, Fayolle Guillaume, Montaron Christophe, and Coscia David
- Subjects
Physics ,QC1-999 - Abstract
Operating a lidar on Mars would fulfill the need of accessing wind and aerosol profiles in the atmospheric boundary layer. This is the purpose of the MARs Boundary Layer Lidar (MARBLL) instrument. We report recent developments of this compact direct-detection wind lidar designed to operate from the surface of Mars. A new laser source has been developed and an azimuthal scanning capability has been added. Preliminary results of a field campaign are presented.
- Published
- 2018
- Full Text
- View/download PDF
9. Abiotic input of fixed nitrogen by bolide impacts in CH4+CO2+N2 and H2+CH4+CO2+N2 atmospheres. Comparison with nitrate levels measured by the curiosity rover's sample analysis at mars instrument
- Author
-
Navarro-González, Rafael, Navarro, Karina, Coll, Patrice, Mckay, Christopher, Sutter, Brad, Stern, Jennifer, Archer, P., Mcadam, Amy, Szopa, Cyril, Freissinet, Caroline, Franz, H., Buch, Arnaud, Prats, B., Millan, Maeva, Eigenbrode, L., Coscia, David, Teinturier, S., Bonnet, Jean-Yves, Glavin, D., Williams, A., Raulin, François, Cabane, Michel, Ming, D., Malespin, C., Mahaffy, Paul, Martín-Torres, F., Zorzano-Mier, Maria-Paz, Atreya, Sushil, Fraeman, A., Vasavada, Ashwin, Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), NASA Ames Research Center (ARC), Jacobs Technology ESCG, NASA Goddard Space Flight Center (GSFC), NASA Johnson Space Center (JSC), NASA, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie des Procédés et Matériaux (LGPM), CentraleSupélec-Université Paris-Saclay, GSFC Solar System Exploration Division, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Telespazio France, Department of Computer science, Electrical and Space engineering, Luleå University of Technology (LUT), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of Michigan [Ann Arbor], University of Michigan System, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), and Cardon, Catherine
- Subjects
[SDU] Sciences of the Universe [physics] ,[SDU]Sciences of the Universe [physics] ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2021
10. Search of Phosphine in the Evolved Gases from Hypophosphite/Phosphite Minerals in Lacustrine Sedimentary Rocks at Gale Crater by the Sample Analysis at Mars
- Author
-
Navarro-González, R., Coll, Patrice, Szopa, Cyril, Freissinet, Caroline, Buch, Arnaud, Mckay, C., Mcintosh, Ophélie, Millan, Maeva, Archer, P., Eigenbrode, J., Sutter, B., Prats, B., Williams, A., Mcadam, A., Franz, H., Steele, A., Atreya, S., Wong, G., Stern, J., Ming, D., Coscia, David, Teinturier, Samuel, Bonnet, Jean-Yves, Clark, J., House, C., Glavin, D., Raulin, François, Cabane, Michel, Malespin, C., Mahaffy, Paul, Martín-Torres, F., Zorzano-Mier, M.-P., Meslin, P.-Y, Rodriguez-Manfredi, J., Fraeman, A., Vasavada, A., McIntosh, Ophélie, Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie des Procédés et Matériaux (LGPM), CentraleSupélec-Université Paris-Saclay, NASA Ames Research Center (ARC), Georgetown University [Washington] (GU), Jacobs Technology ESCG, NASA Goddard Space Flight Center (GSFC), University of Florida [Gainesville] (UF), Carnegie Institution for Science, University of Michigan [Ann Arbor], University of Michigan System, Pennsylvania State University (Penn State), Penn State System, NASA Johnson Space Center (JSC), NASA, Department of Geological Sciences [Gainesville] (UF|Geological), University of Aberdeen, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), and California Institute of Technology (CALTECH)
- Subjects
[SDU]Sciences of the Universe [physics] - Abstract
International audience
- Published
- 2021
11. The Sample Analysis at Mars Investigation and Instrument Suite
- Author
-
Mahaffy, Paul R., Webster, Christopher R., Cabane, Michel, Conrad, Pamela G., Coll, Patrice, Atreya, Sushil K., Arvey, Robert, Barciniak, Michael, Benna, Mehdi, Bleacher, Lora, Brinckerhoff, William B., Eigenbrode, Jennifer L., Carignan, Daniel, Cascia, Mark, Chalmers, Robert A., Dworkin, Jason P., Errigo, Therese, Everson, Paula, Franz, Heather, Farley, Rodger, Feng, Steven, Frazier, Gregory, Freissinet, Caroline, Glavin, Daniel P., Harpold, Daniel N., Hawk, Douglas, Holmes, Vincent, Johnson, Christopher S., Jones, Andrea, Jordan, Patrick, Kellogg, James, Lewis, Jesse, Lyness, Eric, Malespin, Charles A., Martin, David K., Maurer, John, McAdam, Amy C., McLennan, Douglas, Nolan, Thomas J., Noriega, Marvin, Pavlov, Alexander A., Prats, Benito, Raaen, Eric, Sheinman, Oren, Sheppard, David, Smith, James, Stern, Jennifer C., Tan, Florence, Trainer, Melissa, Ming, Douglas W., Morris, Richard V., Jones, John, Gundersen, Cindy, Steele, Andrew, Wray, James, Botta, Oliver, Leshin, Laurie A., Owen, Tobias, Battel, Steve, Jakosky, Bruce M., Manning, Heidi, Squyres, Steven, Navarro-González, Rafael, McKay, Christopher P., Raulin, Francois, Sternberg, Robert, Buch, Arnaud, Sorensen, Paul, Kline-Schoder, Robert, Coscia, David, Szopa, Cyril, Teinturier, Samuel, Baffes, Curt, Feldman, Jason, Flesch, Greg, Forouhar, Siamak, Garcia, Ray, Keymeulen, Didier, Woodward, Steve, Block, Bruce P., Arnett, Ken, Miller, Ryan, Edmonson, Charles, Gorevan, Stephen, and Mumm, Erik
- Published
- 2012
- Full Text
- View/download PDF
12. A laboratory pilot for in situ analysis of refractory organic matter in Martian soil by gas chromatography–mass spectrometry
- Author
-
Meunier, Damein, Sternberg, Robert, Mettetal, Franck, Buch, Arnaud, Coscia, David, Szopa, Cyril, Rodier, Claude, Coll, Patrice, Cabanec, Michael, and Raulin, François
- Published
- 2007
- Full Text
- View/download PDF
13. The Search for Nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument
- Author
-
Navarro-Gonzalez, Rafael, Stern, Jennifer C, Freissinet, Caroline, McKay, Chirstopher P, Sutter, Brad, Archer, P. Douglas, Jr, McAdam, Amy, Franz, Heather, Coll, Partice J, Glavin, Daniel Patrick, Eigenbrode, Jennifer L, Wong, Mike, Atreya, Sushiil K, Wray, James J, Steele, Andrew, Prats, Benito D, Szopa, Cyril, Coscia, David, Teinturier, Samuel, Buch, Arnaud, Leshin, Laurie A, Ming, Douglas W, Conrad, Pamela Gales, Cabane, Michel, Mahaffy, Paul R, and Grotzinger, John P
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as N2 but it was lost by sputtering and photochemical loss to space, impact erosion, and chemical oxidation to nitrates. A nitrogen cycle may exist on Mars where nitrates, produced early in Mars' history, may have been later decomposed back into N2 by the current impact flux. Nitrates are a fundamental source of nitrogen for terrestrial microorganisms, and they have evolved metabolic pathways to perform both oxidation and reduction to drive a complete biological nitrogen cycle. Therefore, the characterization of nitrogen in Martian soils is important to assess habitability of the Martian environment, particularly with respect to the presence of nitrates. The only previous mission that was designed to search for soil nitrates was the Phoenix mission but N-containing species were not detected by TEGA or the MECA WCL. Nitrates have been tentatively identified in Nakhla meteorites, and if nitrogen was oxidized on Mars, this has important implications for the habitability potential of Mars. Here we report the results from the Sample Analysis at Mars (SAM) instrument suite aboard the Curiosity rover during the first year of surface operations in Gale Crater. Samples from the Rocknest aeolian deposit and sedimentary rocks (John Klein) were heated to approx 835degC under helium flow and the evolved gases were analyzed by MS and GC-MS. Two and possibly three peaks may be associated with the release of m/z 30 at temperatures ranging from 180degC to 500degC. M/z 30 has been tentatively identified as NO; other plausible contributions include CH2O and an isotopologue of CO, 12C18O. NO, CH2O, and CO may be reaction products of reagents (MTBSTFA/DMF) carried from Earth for the wet chemical derivatization experiments with SAM and/or derived from indigenous soil nitrogenated organics. Laboratory analyses indicate that it is also possible that <550degC evolved NO is produced via reaction of HCl with nitrates arising from the decomposition of perchlorates. All sources of m/z 30 whether it be martian or terrestrial will be considered and their implications for Mars will be discussed.
- Published
- 2013
14. Evidence for Perchlorates and the Origin of Chlorinated Hydrocarbons Detected by SAM at the Rocknest Aeolian Deposit in Gale Crater
- Author
-
Glavin, Daniel P, Freissinet, Caroline, Miller, Kristen E, Eigenbrode, Jennifer L, Brunner, Anna E, Buch, Arnaud, Sutter, Brad, Archer, P. Douglas, Jr, Atreya, Sushil K, Brinckerhoff, William B, Cabane, Michel, Coll, Patrice, Conrad, Pamela G, Coscia, David, Dworkin, Jason P, Franz, Heather B, Grotzinger, John P, Leshin, Laurie A, Martin, Mildred G, McKay, Christopher, Ming, Douglas W, Navarro-Gonzalez, Rafael, Pavlov, Alexander, Steele, Andrew, Summons, Roger E, Szopa, Cyril, Teinturier, Samuel, and Mahaffy, Paul R
- Subjects
Lunar And Planetary Science And Exploration - Abstract
A single scoop of the Rocknest aeolian deposit was sieved (less than 150 micrometers), and four separate sample portions, each with a mass of approximately 50 mg, were delivered to individual cups inside the Sample Analysis at Mars (SAM) instrument by the Mars Science Laboratory rover's sample acquisition system. The samples were analyzed separately by the SAM pyrolysis evolved gas and gas chromatograph mass spectrometer analysis modes. Several chlorinated hydrocarbons including chloromethane, dichloromethane, trichloromethane, a chloromethylpropene, and chlorobenzene were identified by SAM above background levels with abundances of approximately 0.01 to 2.3 nmol. The evolution of the chloromethanes observed during pyrolysis is coincident with the increase in O2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2·nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the Martian regolith.
- Published
- 2013
- Full Text
- View/download PDF
15. Review and Latest Results of Laboratory Investigations of Titan's Aerosols
- Author
-
Coll, Patrice, Coscia, David, Gazeau, Marie-Claire, Guez, Lionel, and Raulin, François
- Published
- 1998
- Full Text
- View/download PDF
16. Influence of Calcium Perchlorate on the Search for Martian Organic Compounds with MTBSTFA/DMF Derivatization.
- Author
-
He, Yuanyuan, Buch, Arnaud, Szopa, Cyril, Millan, Maëva, Freissinet, Caroline, Navarro-Gonzalez, Rafael, Guzman, Melissa, Johnson, Sarah, Glavin, Danny, Williams, Amy, Eigenbrode, Jennifer, Teinturier, Samuel, Malespin, Charles, Coscia, David, Bonnet, Jean-Yves, Lu, Pin, Cabane, Michel, and Mahaffy, Paul
- Published
- 2021
- Full Text
- View/download PDF
17. Optimization of the TMAH Thermochemolysis Technique for the Detection of Trace Organic Matter on Mars by the SAM and MOMA-Pyr-GC-MS Experiment
- Author
-
Buch, A., Morisson, M., Szopa, Cyril, Millan, Maeva, Freissinet, Caroline, He, Y., Glavin, Daniel, Bonnet, Jean-Yves, Coscia, David, Williams, A., Stalport, F., Raulin, François, Stambouli, M., Teinturier, Samuel, Navarro-González, Rafael, Malespin, C., Mahaffy, Paul, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Georgetown University [Washington] (GU), NASA Goddard Space Flight Center (GSFC), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Towson University [Towson, MD, United States], University of Maryland System, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Universidad Nacional Autónoma de México (UNAM), IMPEC - LATMOS, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), and Buch, Arnaud
- Subjects
[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience; Boththe Sample Analysis at Mars (SAM) and Mars Organic Molecule Analyzer (MOMA)instrumentsare able to identify organic material at the Martian surface and subsurface. Both experiments are equipped with pyrolysis-Gas Chromatography-Mass Spectrometry (Pyr-GC-MS)and derivatization reagents (MTBSTFA)that will allowthe analyzerefractory com-pounds,making them more volatile and protecting the labile chemical groups. In order to improve the Pyr-GC-MS analysis, TMAH (tetramethylammonium hydrox-ide) will be used on MOMA and SAM to extract refrac-tory compounds (macromolecules, kerogen, etc.) and protect polar compounds released from the pyrolysis ex-periment.We performed pyrolysis and TMAH-thermochemolysis of a Martian regolith simulant (JSC-Mars-1) to optimizeanalytical parameters, especially the thermochemolysis temperature, to ensure the success of the near future in situthermochemolysis analyses on Mars.
- Published
- 2018
18. Detection of Nitrites by the Sample Analysis at Mars (SAM) Instrument. Implications for the Oxidation State of the Atmosphere
- Author
-
Navarro-González, Rafael, Coll, Patrice, Sutter, B., Stern, J., Mckay, C., Martín-Torres, F., Zorzano-Mier, M.-P., Archer, P., Buch, A., Cabane, Michel, Coscia, David, Glavin, Daniel, Franz, H., Freissinet, Caroline, McAdam, Amy, Ming, D., Raulin, François, Szopa, Cyril, Teinturier, Samuel, Mahaffy, R., Malespin, C., Vasavada, A., Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Jacobs Technology ESCG, NASA Goddard Space Flight Center (GSFC), NASA Ames Research Center (ARC), Luleå University of Technology (LUT), Instituto Andaluz de Ciencias de la Tierra (IACT), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad de Granada (UGR), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), NASA Johnson Space Center (JSC), NASA, Jet Propulsion Laboratory (JPL), California Institute of Technology (CALTECH)-NASA, Buch, Arnaud, Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), NASA-California Institute of Technology (CALTECH), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Universidad de Granada (UGR)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), and IMPEC - LATMOS
- Subjects
[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology ,ComputingMilieux_MISCELLANEOUS ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience
- Published
- 2018
19. Influence of Calcium Perchlorate on the Search for Organics on Mars with Tetramethylammonium Hydroxide Thermochemolysis.
- Author
-
He, Yuanyuan, Buch, Arnaud, Szopa, Cyril, Williams, Amy J., Millan, Maëva, Malespin, Charles A., Glavin, Daniel P., Freissinet, Caroline, Eigenbrode, Jennifer L., Teinturier, Samuel, Coscia, David, Bonnet, Jean-Yves, Stern, Jennifer C., Stalport, Fabien, Guzman, Melissa, Chaouche-Mechidal, Naila, Lu, Pin, Navarro-Gonzalez, Rafael, Butin, Vincent, and El Bekri, Jamila
- Published
- 2021
- Full Text
- View/download PDF
20. The MarsOrganiX experiment: Understanding the influence of the secondary X-Rays on the organic matter at Mars’ near-surface
- Author
-
Buch, Arnaud, Szopa, Cyril, Freissinet, Caroline, Stalport, Fabien, Coscia, David, Pavlov, Alexander, Gilbert, Pierre, Bonnet, Jean-Yves, Guerrini, Vincent, Navarro-González, Rafael, Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Cardon, Catherine, Universidad Nacional Autónoma de México (UNAM), IMPEC - LATMOS, and Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU] Sciences of the Universe [physics] ,[SDU]Sciences of the Universe [physics] - Abstract
International audience; Mars may have harbored a prebiotic chemistry that could have led to the emergence of life. If such, traces of these could be preserved in the oldest (3.5 billion years and more) rocks at the surface of the planet. Because of the thin atmosphere of Mars and the absence of an active magnetic field, the harsh radiative environment at the near-surface consists of UV and X-ray radiation, galactic and solar cosmic rays (GCRs and SCRs), as well as secondary particles produced by the interaction of GCRs and SCRs with the atmosphere and soil (secondary X-rays). The majority of the X-rays at the martian surface are generated in the rocks by the penetrating GCR and SCR particles. The GCRs’ secondary X-rays’ absorbed dose, at the top centimeters of the surface of Mars, has been estimated at about 0.05 Gy per year. All these radiation (direct and indirect) are prone to induce extended degradation or transformation of organic matter that would be present at Mars’ near-surface, down to the ~3 m depth of the GCRs/SCRs penetration.The SAM experiment onboard Curiosity rover led to the first in situ detection of organic molecules in martian rocks and soils. Chlorobenzene was detected in Cumberland at a concentration of up to 300 parts per billion in weight. However, chlorobenzene was thought to be formed in the SAM oven, during the pyrolysis of the sample. Nevertheless, Cumberland sample has been exposed to GCRs and SCRs for about 80 million years, and thus, the undergone X-rays radiation may have processed the organic matter and chlorinated the organic molecules in presence of perchlorate. Therefore, this study aims at evaluating the possible precursor(s), that would lead to the formation of chlorobenzene (detected with SAM) when irradiated in presence of perchlorate.Using the PSICHE beam line at SOLEIL, a synchrotron facility in France, we studied the extend of degradation and transformation of two organic molecules of interest, a carboxylic acid (benzoic acid) and an amino acid (L-alanine) in absence and presence of perchlorate, under the simulated X-rays radiative environments present at Mars’ near-surface. The solid and gaseous phases of the samples were analyzed to evaluate the potential degradation of the molecules during irradiation (MS) and to characterize the residual organic content after irradiation in the retrieved samples (FTIR and GCMS).
- Published
- 2017
21. The Sample Analysis at Mars (SAM) Wet Chemistry Experiment Introduction: The Sample Analysis at Mars (SAM)
- Author
-
Malespin, Charles, Freissinet, Caroline, Mahaffy, Paul, Teinturier, Samuel, Glavin, Daniel, Mcadam, Amy, Williams, R., Buch, A., Szopa, Cyril, Coscia, David, Raaen, E., Johnson, C., Brinckerhoff, W., Prats, B., Gonzales, R., Buch, Arnaud, NASA Goddard Space Flight Center (GSFC), Center for Research and Exploration in Space Science and Technology [GSFC] (CRESST), Goddard Earth Sciences and Technology and Research (GESTAR), Universities Space Research Association (USRA)-NASA, Department of Astronomy [College Park], University of Maryland [College Park], University of Maryland System-University of Maryland System, Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), eINFORMe inc., Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México (UNAM), NASA-Universities Space Research Association (USRA), and Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2017
22. Micro gas chromatography based on mems technology for the analysisof volatile species in planetary environments
- Author
-
Szopa, Cyril, Coscia, David, Buch, Arnaud, Pineau, Jean-Pierre, Coll, Patrice, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Cardon, Catherine, IMPEC - LATMOS, and Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,[PHYS.PHYS.PHYS-AO-PH] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] - Abstract
International audience; Gas chromatography is used since the Mars Viking missions in the 70’s to characterize the nature and amount of volatile chemical compounds present in planetary atmospheres, soils or rocks. This technique allows to separate the gaseous compound injected in the instrument for their subsequent detection either by a physical sensor, or a spectrometer giving information about the structure of the volatile. This pre-separation is precious to proceed to the identification of individual species present in a complex mixture. Moreover, it is a unique method to separate and quantify enantiomers of organic molecules which is a key information in astrobiology to assess the potential for such molecules to be related to a biotic or a pre-biotic process. Finally, the potential of this technique is proven by its current use in the Curiosity rover at the Mars surface, as it allowed to demonstrate the presence of organic material endogenous to Mars for the first time ever [1].But despite its efficiency, this instrumentation is based on laboratory technologies and requires for resources which are limited (e.g. carrier gas), making it a resources consuming instrumentation. That prevents it to be considered for small and light scientific payloads. This is one among reasons why our team initiated a research and technology action with the aim to miniaturize this type of instrumentation. This work relies on the use of micro-electro mechanical systems and their integration into a complete chromatographic system with the aim to gain one order of magnitude in term of resources required to make it work.In this communication we will present the different components that were developed for this project and their tested performances which show the potential for this system to be used in future in situ exploration space probes.
- Published
- 2016
23. Potential Sources of Artifacts and Backgrounds Generated by the Sample Preparation of SAM
- Author
-
Buch, A., Belmahdi, Imène, Szopa, Cyril, Freissinet, Caroline, Glavin, Daniel, Coll, Patrice, Cabane, Michel, Millan, Maeva, Eigenbrode, Jennifer, Navarro-González, Rafael, Stern, Jennifer, Pinnick, Veronica, Coscia, David, Teinturier, Samuel, Morisson, M., Stambouli, M., Dequaire, T., Mahaffy, Paul, Buch, Arnaud, Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), IMPEC - LATMOS, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and Universidad Nacional Autónoma de México (UNAM)
- Subjects
[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU.STU.PG] Sciences of the Universe [physics]/Earth Sciences/Paleontology ,[SDU.STU.PG]Sciences of the Universe [physics]/Earth Sciences/Paleontology ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience; Sample Analysis at Mars (SAM) is one of the instruments of the MSL mission. Three analytical devices are onboard SAM: the Tunable Laser Spectrometer (TLS), the Gas Chromatography (GC) and the Mass Spectrometer (MS). To adapt the nature of a sample to the analytical devices used, a sample preparation and gas processing system implemented with (a) a pyrolysis system, (b) wet chemistry: MTBSTFA and TMAH (c) the hydrocarbon trap (silica beads, Tenax® TA and Carbosieve G) and the injection trap (Tenax® GR composed of Tenax® TA and 30% of graphite) are employed to concentrate vol-atiles released from the sample prior to GC-MS analysis [1]. This study investigates several propositions for chlo-rinated hydrocarbon formation detected in the SAM background by looking for: (a) all products coming from the interaction of Tenax® and perchlorates, (b) also between some soil sample and perchlorates and (c) sources of chlorinated hydrocarbon precursors. Here we report on the detection of chlorohydrocarbon compounds and their potential origin.
- Published
- 2016
24. Highlight on the indigenous organic molecules detected on Mars by SAM and potential sources of artifacts and backgrounds generated by the sample preparation
- Author
-
Buch, Arnaud, Belmahdi, Imène, Szopa, Cyril, Freissinet, Caroline, Glavin, Daniel P., Coll, Patrice, Cabane, Michel, Millan, Maeva, Eigenbrode, Jennifer, Navarro-Gonzalez, Rafael, Stern, Jennifer, Pinnick, Veronica, Coscia, David, Teinturier, Samuel, Stambouli, Moncef, Dequaire, Tristan, Mahaffy, Paul R., Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, IMPEC - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), Center for Research and Exploration in Space Science and Technology [GSFC] (CRESST), Cardon, Catherine, PLANETO - LATMOS, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), and Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)
- Subjects
[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,[SDU.ASTR.SR] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience; Among the experiments which explore the martian soil aboard the Curiosity Rover, SAM experiment is mainly dedicated to the search for indigenous organic compounds. To reach its goals SAM can operate in different analysis modes: Pyrolysis-GC-MS and Pyrolysis-MS (EGA). In addition SAM includes wet chemistry experiments [1] to supports extraction of polar organic compounds from solid samples that improves their detection either by increasing the release of chemical species from solid sample matrices, or by changing their chemical structure to make compounds more amenable to gas chromatography mass spectrometry (GCMS). The two wet chemistry experimental capabilities of SAM provide alternatives to the nominal inert-thermal desorption/pyrolysis analytical protocol and are more aptly suited for polar components: MTBSTFA derivatization [2-3] and TMAH thermochemolysis [4-5]. Here we focus on the MTBSTFA derivatization experiment.In order to build a support used to help the interpretation of SAM results, we have investigated the artifacts and backgrounds sources generated by the all analysis process: Solid sample were heated up to approximately 840°C at a rate of 35°C/min under He flow. For GC analyses, the majority of the gas released was trapped on a hydrocarbon trap (Tenax®) over a specific temperature range. Adsorbed volatiles on the GC injection trap (IT) were then released into the GC column (CLP-MXT 30m x 0.25mm x 0.25µm) by rapidly heating the IT to 300°C. Then, in order better understand the part of compounds detected coming from internal reaction we have performed several lab experiments to mimic the SAM device: Among the sources of artifact, we test: (1) the thermal stability and the organic material released during the degradation of Tenax® and carbosieve, (2) the impact of MTBSTFA and a mixture of DMF and MTBSTFA on the adsorbent, (3) the reaction between the different adsorbents (Tenax® and Carbosieve) and calcium perchlorate and then (4) the sources and molecules that may constitute organic material precursors sources. References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013), Science, [4] Williams, A.J., Eigenbrode, J.L.,m Floyd, M.M., Wilhelm, M.B., and Mahaffy, P.R., (2015), GSA. [5] Eigenbrode, J.L. et al. (2010), LPSC, abst.1460.
- Published
- 2015
25. In situ pyro-gc-ms chemical analysis of lunar soils : a ground truth to interpret analyses of the samples returned from the Moon
- Author
-
Szopa, Cyril, Gerasimov, M., Wurz, P., Hofer, L., Cabane, Michel, Coll, Patrice, Buch, A., Sapgir, A.G., Aseev, S.A., Zaitsev, M.A., Coscia, David, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Space Science Institute [Macau] (SSI), Macau University of Science and Technology (MUST), Physikalisches Institut [Bern], Universität Bern [Bern], Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Cardon, Catherine, Universität Bern [Bern] (UNIBE), IMPEC - LATMOS, and Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,Physics::Space Physics ,[SDU.ASTR.SR] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Astrophysics::Earth and Planetary Astrophysics ,Physics::Geophysics - Abstract
International audience; Volatiles were recently discovered to be present at the Lunar pole. These volatiles probably comes from meteorites and micrometeorites which continue to deliver their material at the surface of the satellite. Thus, their characterisation would enable to better constrain the nature of the species brought by the meteorites to the solar system bodies, evaluate their evolution under Moon surface conditions. Thus is what we expect to be able to do within a few years with the Gas Analytical Package experiment onboard the Louna Globe mission.
- Published
- 2015
26. Determination of the Possible Sources of Chlorinated Hydrocarbons Detected During Viking and MSL Missions
- Author
-
Buch, A., Belmahdi, Imène, Szopa, Cyril, Freissinet, Caroline, Glavin, Daniel, Miller, K., Summons, R., François, P., Coll, Patrice, Teinturier, Samuel, Eigenbrode, Jennifer, Navarro-Gonzalez, Rafael, McAdam, Amy, Stern, J., Coscia, David, Dequaire, T., Millan, Maeva, Bonnet, Jean-yves, Mahaffy, Paul, Cabane, Michel, Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Massachusetts Institute of Technology (MIT), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Universidad Nacional Autónoma de México (UNAM), Buch, Arnaud, IMPEC - LATMOS, and Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience; Interest of exploration on Mars Mars is interesting given that its early history is similar to one on the Earth. In fact, volcanoes were still active, the environment was wetter and warmer and the magneto-sphere still existed. Source of organic Mars: Various sources of endoge-nous organic matter (OM) could have existed including (a) abiotic production via hydrothermal vents, volcanism and atmospheric synthesis and (b) biotic synthesis. Currently, the sources of extraterrestrial organic compounds that should be delivered to Mars are known: carbon-rich meteorites , micrometeorites, comets and interstellar dust particles. Stabilization of the OM takes place through three mechanisms described in the article of Lützow (1): (1) First, the selective preservation of OM is described as a phenomenon of accumulation of some compounds because of their resistance against the environment. (2) The second path which allows the persistence of OM is the space isolation of OM from environmental stress. (3) The last way to stabilize the OM is intermolecular interactions between minerals or metal ions with OM. One of the primary objectives of the Mars Science Laboratory (MSL) mission is to search for environments on the Martian surface that have preserved OM. Structure and aim of SAM Sample Analysis at Mars (SAM) is one of the instruments of the MSL mission. Three analytical devices are onboard SAM: the Tunable Laser Spectrometer (TLS), the Gas Chromatograph (GC) and the Mass Spectrometer (MS) (2). Solid sample preparation: To adapt the nature of a sample to the analytical devices used, a sample preparation and gas processing system implemented with (a) a pyrolysis system, (b) wet chemistry: MTBSTFA and TMAH (c) the hydrocarbon trap (silica beads, Tenax® TA and Car-bosieve G) which is employed to concentrate volatiles released from the sample prior to the GC-MS analyses. Detection of chlorinated hydrocarbons All chlorinated hydrocarbons detected during the Viking I and II missions and MSL (Rocknest (RN), John Klein (JK), Cumberland (CB) and Confidence Hill (CH)) are listed in Table 1. Viking landers (1976): The origin of chloromethane and dichloromethane was explained at the time by terrestrial contamination from the instruments (3). In a recent paper from Navarro-González (4), these results have been rein-terpreted and chlorinated compounds could have been the product of the reaction of perchlorates identified by Phoe-nix (5) with martian organic carbon present in the sample or terrestrial organic carbon in the instrument or sample handling chain. MSL (2011): A diverse range of chlorinated hydrocarbons have been detected with SAM after GCMS analysis of samples collected from several sites explored by Curiosity rover (Table 1). Some of these chlorohydrocarbons are produced during pyrolysis by the reaction of martian oxychlorine compounds in the samples with terrestrial carbon from a derivatization agent (MTBSTFA) present in SAM (6, 7). Chlorobenzene (CBZ) cannot be formed by the reaction of MTBSTFA and perchlorates (6) and two other reaction pathways for CBZ were therefore proposed : (1) reactions between the volatile thermal degradation products of perchlorates (e.g. O2, Cl2 and HCl) and Tenax® and (2) the interaction of perchlorates (T > 200 °C) with OM from Mars's soil such as benzenecarbox-ylates (8, 9). Among all the sample analyzed by SAM, JK and CB sites are interesting; smectites (phyllosilicates-18 to 22 wt %) and quartz (0.1 to 1 wt %) were detected at the two sites (10) and could have an important role in the preservation of OM (1). Objectives This study investigates several hypotheses for chlorin-ated hydrocarbon formation by looking for: (a) all products coming from the interaction of Tenax® and perchlorates, (b) products between various soil sample and perchlorates and (c) sources of chlorinated hydrocarbon precursors. Experiments and methods: To answer some of our remaining questions, laboratory experiments were done in several solid matrices which Viking MSL RN JK CB CH
- Published
- 2015
27. Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars
- Author
-
Stern, Jennifer C., Sutter, Brad, Freissinet, Caroline, Navarro-González, Rafael, McKay, Christopher P., Archer, P. Douglas, Buch, Arnaud, Brunner, Anna E., Coll, Patrice, Eigenbrode, Jennifer L., Fairen, Alberto G., Franz, Heather B., Glavin, Daniel P., Kashyap, Srishti, McAdam, Amy C., Ming, Douglas W., Steele, Andrew, Szopa, Cyril, Wray, James J., Martín-Torres, F. Javier, Zorzano, Maria-Paz, Conrad, Pamela G., Mahaffy, Paul R., Kemppinen, Osku, Bridges, Nathan, Johnson, Jeffrey R., Minitti, Michelle, Cremers, David, Bell, James F., Edgar, Lauren, Farmer, Jack, Godber, Austin, Wadhwa, Meenakshi, Wellington, Danika, McEwan, Ian, Newman, Claire, Richardson, Mark, Charpentier, Antoine, Peret, Laurent, King, Penelope, Blank, Jennifer, Weigle, Gerald, Schmidt, Mariek, Li, Shuai, Milliken, Ralph, Robertson, Kevin, Sun, Vivian, Baker, Michael, Edwards, Christopher, Ehlmann, Bethany, Farley, Kenneth, Griffes, Jennifer, Grotzinger, John, Miller, Hayden, Newcombe, Megan, Pilorget, Cedric, Rice, Melissa, Siebach, Kirsten, Stack, Katie, Stolper, Edward, Brunet, Claude, Hipkin, Victoria, Léveillé, Richard, Marchand, Geneviève, Sánchez, Pablo Sobrón, Favot, Laurent, Cody, George, Flückiger, Lorenzo, Lees, David, Nefian, Ara, Martin, Mildred, Gailhanou, Marc, Westall, Frances, Israël, Guy, Agard, Christophe, Baroukh, Julien, Donny, Christophe, Gaboriaud, Alain, Guillemot, Philippe, Lafaille, Vivian, Lorigny, Eric, Paillet, Alexis, Pérez, René, Saccoccio, Muriel, Yana, Charles, Armiens-Aparicio, Carlos, Rodríguez, Javier Caride, Blázquez, Isaías Carrasco, Gómez, Felipe Gómez, Gómez-Elvira, Javier, Hettrich, Sebastian, Malvitte, Alain Lepinette, Jiménez, Mercedes Marín, Martínez-Frías, Jesús, Martín-Soler, Javier, Torres, F. Javier Martín, Jurado, Antonio Molina, Mora-Sotomayor, Luis, Caro, Guillermo Muñoz, López, Sara Navarro, Peinado-González, Verónica, Pla-García, Jorge, Manfredi, José Antonio Rodriguez, Romeral-Planelló, Julio José, Fuentes, Sara Alejandra Sans, Martinez, Eduardo Sebastian, Redondo, Josefina Torres, Urqui-O'Callaghan, Roser, Mier, María-Paz Zorzano, Chipera, Steve, Lacour, Jean-Luc, Mauchien, Patrick, Sirven, Jean-Baptiste, Manning, Heidi, Fairén, Alberto, Hayes, Alexander, Joseph, Jonathan, Squyres, Steven, Sullivan, Robert, Thomas, Peter, Dupont, Audrey, Lundberg, Angela, Melikechi, Noureddine, Mezzacappa, Alissa, DeMarines, Julia, Grinspoon, David, Reitz, Günther, Prats, Benito, Atlaskin, Evgeny, Genzer, Maria, Harri, Ari-Matti, Haukka, Harri, Kahanpää, Henrik, Kauhanen, Janne, Paton, Mark, Polkko, Jouni, Schmidt, Walter, Siili, Tero, Fabre, Cécile, Wray, James, Wilhelm, Mary Beth, Poitrasson, Franck, Patel, Kiran, Gorevan, Stephen, Indyk, Stephen, Paulsen, Gale, Gupta, Sanjeev, Bish, David, Schieber, Juergen, Gondet, Brigitte, Langevin, Yves, Geffroy, Claude, Baratoux, David, Berger, Gilles, Cros, Alain, d’Uston, Claude, Forni, Olivier, Gasnault, Olivier, Lasue, Jérémie, Lee, Qiu-Mei, Maurice, Sylvestre, Meslin, Pierre-Yves, Pallier, Etienne, Parot, Yann, Pinet, Patrick, Schröder, Susanne, Toplis, Mike, Lewin, Éric, Brunner, Will, Heydari, Ezat, Achilles, Cherie, Oehler, Dorothy, Cabane, Michel, Coscia, David, Dromart, Gilles, Robert, François, Sautter, Violaine, Le Mouélic, Stéphane, Mangold, Nicolas, Nachon, Marion, Stalport, Fabien, François, Pascaline, Raulin, François, Teinturier, Samuel, Cameron, James, Clegg, Sam, Cousin, Agnès, DeLapp, Dorothea, Dingler, Robert, Jackson, Ryan Steele, Johnstone, Stephen, Lanza, Nina, Little, Cynthia, Nelson, Tony, Wiens, Roger C., Williams, Richard B., Jones, Andrea, Kirkland, Laurel, Treiman, Allan, Baker, Burt, Cantor, Bruce, Caplinger, Michael, Davis, Scott, Duston, Brian, Edgett, Kenneth, Fay, Donald, Hardgrove, Craig, Harker, David, Herrera, Paul, Jensen, Elsa, Kennedy, Megan R., Krezoski, Gillian, Krysak, Daniel, Lipkaman, Leslie, Malin, Michael, McCartney, Elaina, McNair, Sean, Nixon, Brian, Posiolova, Liliya, Ravine, Michael, Salamon, Andrew, Saper, Lee, Stoiber, Kevin, Supulver, Kimberley, Van Beek, Jason, Van Beek, Tessa, Zimdar, Robert, French, Katherine Louise, Iagnemma, Karl, Miller, Kristen, Summons, Roger, Goesmann, Fred, Goetz, Walter, Hviid, Stubbe, Johnson, Micah, Lefavor, Matthew, Lyness, Eric, Breves, Elly, Dyar, M. Darby, Fassett, Caleb, Blake, David F., Bristow, Thomas, DesMarais, David, Edwards, Laurence, Haberle, Robert, Hoehler, Tori, Hollingsworth, Jeff, Kahre, Melinda, Keely, Leslie, McKay, Christopher, Bleacher, Lora, Brinckerhoff, William, Choi, David, Conrad, Pamela, Dworkin, Jason P., Eigenbrode, Jennifer, Floyd, Melissa, Garvin, James, Glavin, Daniel, Harpold, Daniel, Mahaffy, Paul, Martin, David K., McAdam, Amy, Pavlov, Alexander, Raaen, Eric, Smith, Michael D., Stern, Jennifer, Tan, Florence, Trainer, Melissa, Meyer, Michael, Posner, Arik, Voytek, Mary, Anderson, Robert C, Aubrey, Andrew, Beegle, Luther W., Behar, Alberto, Blaney, Diana, Brinza, David, Calef, Fred, Christensen, Lance, Crisp, Joy A., DeFlores, Lauren, Feldman, Jason, Feldman, Sabrina, Flesch, Gregory, Hurowitz, Joel, Jun, Insoo, Keymeulen, Didier, Maki, Justin, Mischna, Michael, Morookian, John Michael, Parker, Timothy, Pavri, Betina, Schoppers, Marcel, Sengstacken, Aaron, Simmonds, John J., Spanovich, Nicole, Juarez, Manuel de la Torre, Vasavada, Ashwin R., Webster, Christopher R., Yen, Albert, Archer, Paul Douglas, Cucinotta, Francis, Jones, John H., Ming, Douglas, Morris, Richard V., Niles, Paul, Rampe, Elizabeth, Nolan, Thomas, Fisk, Martin, Radziemski, Leon, Barraclough, Bruce, Bender, Steve, Berman, Daniel, Dobrea, Eldar Noe, Tokar, Robert, Vaniman, David, Williams, Rebecca M. E., Yingst, Aileen, Lewis, Kevin, Leshin, Laurie, Cleghorn, Timothy, Huntress, Wesley, Manhès, Gérard, Hudgins, Judy, Olson, Timothy, Stewart, Noel, Sarrazin, Philippe, Grant, John, Vicenzi, Edward, Wilson, Sharon A., Bullock, Mark, Ehresmann, Bent, Hamilton, Victoria, Hassler, Donald, Peterson, Joseph, Rafkin, Scot, Zeitlin, Cary, Fedosov, Fedor, Golovin, Dmitry, Karpushkina, Natalya, Kozyrev, Alexander, Litvak, Maxim, Malakhov, Alexey, Mitrofanov, Igor, Mokrousov, Maxim, Nikiforov, Sergey, Prokhorov, Vasily, Sanin, Anton, Tretyakov, Vladislav, Varenikov, Alexey, Vostrukhin, Andrey, Kuzmin, Ruslan, Clark, Benton, Wolff, Michael, McLennan, Scott, Botta, Oliver, Drake, Darrell, Bean, Keri, Lemmon, Mark, Schwenzer, Susanne P., Anderson, Ryan B., Herkenhoff, Kenneth, Lee, Ella Mae, Sucharski, Robert, Hernández, Miguel Ángel de Pablo, Ávalos, Juan José Blanco, Ramos, Miguel, Kim, Myung-Hee, Malespin, Charles, Plante, Ianik, Muller, Jan-Peter, Ewing, Ryan, Boynton, William, Downs, Robert, Fitzgibbon, Mike, Harshman, Karl, Morrison, Shaunna, Dietrich, William, Kortmann, Onno, Palucis, Marisa, Sumner, Dawn Y., Williams, Amy, Lugmair, Günter, Wilson, Michael A., Rubin, David, Jakosky, Bruce, Balic-Zunic, Tonci, Frydenvang, Jens, Jensen, Jaqueline Kløvgaard, Kinch, Kjartan, Koefoed, Asmus, Madsen, Morten Bo, Stipp, Susan Louise Svane, Boyd, Nick, Campbell, John L., Gellert, Ralf, Perrett, Glynis, Pradler, Irina, VanBommel, Scott, Jacob, Samantha, Owen, Tobias, Rowland, Scott, Savijärvi, Hannu, Boehm, Eckart, Böttcher, Stephan, Burmeister, Sönke, Guo, Jingnan, Köhler, Jan, García, César Martín, Mueller-Mellin, Reinhold, Wimmer-Schweingruber, Robert, Bridges, John C., McConnochie, Timothy, Benna, Mehdi, Franz, Heather, Bower, Hannah, Brunner, Anna, Blau, Hannah, Boucher, Thomas, Carmosino, Marco, Atreya, Sushil, Elliott, Harvey, Halleaux, Douglas, Rennó, Nilton, Wong, Michael, Pepin, Robert, Elliott, Beverley, Spray, John, Thompson, Lucy, Gordon, Suzanne, Newsom, Horton, Ollila, Ann, Williams, Joshua, Vasconcelos, Paulo, Bentz, Jennifer, Nealson, Kenneth, Popa, Radu, Kah, Linda C., Moersch, Jeffrey, Tate, Christopher, Day, Mackenzie, Kocurek, Gary, Hallet, Bernard, Sletten, Ronald, Francis, Raymond, McCullough, Emily, Cloutis, Ed, ten Kate, Inge Loes, Arvidson, Raymond, Fraeman, Abigail, Scholes, Daniel, Slavney, Susan, Stein, Thomas, Ward, Jennifer, Berger, Jeffrey, Moores, John E., NASA Goddard Space Flight Center (GSFC), NASA Johnson Space Center (JSC), NASA, Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), NASA Ames Research Center (ARC), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, ASU School of Earth and Space Exploration (SESE), Arizona State University [Tempe] (ASU), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Department of Astronomy [Ithaca], Cornell University [New York], Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Center for Research and Exploration in Space Science and Technology [GSFC] (CRESST), Centre de Recherche Public Henri Tudor [Technoport] (CRP Henri Tudor), Centre de Recherche Public Henri-Tudor [Luxembourg] (CRP Henri-Tudor), Department of Microbiology [Amherst], University of Massachusetts [Amherst] (UMass Amherst), University of Massachusetts System (UMASS)-University of Massachusetts System (UMASS), Astromaterials Research and Exploration Science (ARES), NASA-NASA, Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), School of Earth and Atmospheric Sciences [Atlanta], Georgia Institute of Technology [Atlanta], Instituto Andaluz de Ciencias de la Tierra (IACT), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad de Granada (UGR), Department of Computer Science, Electrical and Space Engineering [Luleå], Luleå University of Technology (LUT), Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), Carnegie Institution for Science [Washington], Universidad de Granada (UGR)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Cornell University, Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Department of Microbiology, IMPEC - LATMOS, Universidad de Granada (UGR)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), and Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)-Universidad de Granada = University of Granada (UGR)
- Subjects
Martian ,Multidisciplinary ,010504 meteorology & atmospheric sciences ,Water on Mars ,nitrates ,astrobiology ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars ,Mars Exploration Program ,01 natural sciences ,nitrogen ,Astrobiology ,Curiosity ,13. Climate action ,Rocknest ,0103 physical sciences ,Sample Analysis at Mars ,Physical Sciences ,Aeolian processes ,Composition of Mars ,010303 astronomy & astrophysics ,Nitrogen cycle ,Geology ,0105 earth and related environmental sciences - Abstract
International audience; The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110–300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70–260 and 330–1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen.
- Published
- 2015
- Full Text
- View/download PDF
28. Aging and analytical performances evolution of a gas chromatographic system at Mars
- Author
-
Bonnet, Jean-Yves, Szopa, Cyril, Millan, Maeva, Coscia, David, Cabane, Michel, Belmahdi, I., Buch, A., Dequaire, T., Coll, Patrice, Teinturier, S., Mahaffy, P., Cardon, Catherine, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), PLANETO - LATMOS, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), IMPEC - LATMOS, and Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.SR] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[PHYS.PHYS.PHYS-AO-PH] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience; Health data from the gas chromatography (GC) module onboard the SAM instrument [1] will be presented to assess the analytical performances evolution of a GC device in Martian environment through 3 years.
- Published
- 2015
29. In Situ Analysis of Mars Soil and Rocks Sample with the Sam Gcms Instrumentation Onboard Curiosity : Interpretation and Comparison of Measurements Done during the First Martian Year of Curiosity on Mars
- Author
-
Szopa, Cyril, Coll, Patrice, Cabane, Michel, Buch, Arnaud, Coscia, David, Millan, Maeva, Francois, Pascaline, Belmahadi, Imene, Teinturier, Samuel, Navarro-Gonzalez, Rafael, Glavin, Daniel, Freissinet, Caroline, Steele, Andrew, Eigenbrode, Jennifer, Mahaffy, Paul, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, NASA Goddard Space Flight Center (GSFC), Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science, Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), Carnegie Institution for Science [Washington], Cardon, Catherine, IMPEC - LATMOS, and Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience; The characterisation of the chemical and mineralogical composition of solid surface samples collected with the Curiosity rover is a primary objective of the SAM experiment. These data should provide essential clues on the past habitability of Gale crater. Amongst the SAM suite of instruments [1], SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal (heating up to about 900°C)/chemical (derivatization procedure) treatment of any soil sample collected by the Curiosity rover. With the aim to search for potential organic molecules outgassed from the samples, SAM-GC analytical channels composed of thermal-desorption injector, and a MXT-CLP or a MXT-Q chromatographic column was chosen to achieve all the measurements done up today, with the aim to separate of a wide range of volatile inorganic and organic molecules. Four solid samples have been analyzed with GCMS, one sand sample collected at the Rocknest site, two rock samples (John Klein and Cumberland respectively) collected at the Yellowknife Bay site using the Curiosity driller, and one rock sample collected at the Kimberly site.All the measurements were successful and they produced complex chromatograms with both detectors used for SAM GC, i.e. a thermal conductivity detector and the SAM quandrupole mass spectrometer. Their interpretation already revealed the presence of an oxychlorine phase present in the sample which is at the origin of chlorohydrocarbons clearly identified [2] but this represents only a fraction of the GCMS signal recorded [3,4]. This work presents a systematic comparison of the GCMS measurements done for the different samples collected, supported by reference data obtained in laboratory with different spare models of the gas chromatograph, with the aim to bring new elements of interpretation of the SAM measurements.References: [1] Mahaffy, P. et al. (2012) Space Sci Rev, 170, 401-478. [2] Glavin, D. et al. (2013), JGR. [3] Leshin L. et al. (2013), Science, [4] Ming D. et al. (2013), Science, 32, 64–67.Acknowledgements: SAM-GC team acknowledges support from the French Space Agency (CNES), French National Programme of Planetology (PNP), National French Council (CNRS), Pierre Simon Laplace Institute, Institut Universitaire de France (IUF) and ESEP Labex, and the great MSL team
- Published
- 2014
30. The MARs Boundary Layer Lidar experiment (MARBLL): Winds at last on Mars!
- Author
-
Montmessin, Franck, Patel, Manish, Forget, François, Déprez, G., Bruneau, Didier, Coscia, David, Lewis, S., Flamant, Cyrille, Spiga, Aymeric, Määttänen, Anni, Howe, Chris, Bertrand, T., Maurice, Sylvestre, Kahre, M., Abshire, J., Vasavada, A., Lorenz, R., Faure, B., Fouchet, Thierry, Clerc, M.-S., Sengenes, P., Gilbert, Pierre, Madeleine, J.-B., Nguyen Tuong, Napoléon, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), The Open University [Milton Keynes] (OU), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Earth Observation Programmes Directorate [Noordwijk], Agence Spatiale Européenne = European Space Agency (ESA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), TROPO - LATMOS, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), NASA Ames Research Center (ARC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), University of Arizona, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Pôle Planétologie du LESIA, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut Pierre-Simon-Laplace (IPSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Brown University, and Haute résolution angulaire en astrophysique
- Subjects
[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
International audience; MARBLL is an optical remote sensing instrument using a maturestate-of- the-art Doppler wind lidar technology specifically designedto operate at the surface of Mars. The instrument includes an emittingdevice (laser) and a spectral analyzer (Mach-Zehnder interferometer).Wind profiling is inferred from the 1064 nm beam emitted by the laserand subsequently backscattered to the telescope by the suspendedaerosols. The received signal has a Doppler shift induced by theradial velocity component of the particles, which is quantified by theinterferometer.Doppler wind lidars (DWL) offer a unique combination of accuracy andspatial resolution making them the most efficient technique to profilewinds in the terrestrial boundary layer (see e.g. Gentry, 2000;Frehlich, 2008). Existing DWL methods usually require aquasi-monochromatic laser emission and a precise frequency lockingbetween the emitter and the spectral analyzer to infer the windDoppler shift. These requirements lead to specific laser designs(single mode emission) associated with delicate servo-loops. Thetechnical readiness level (TRL) of such systems remains too low toplan their use in the upcoming Mars missions. The conceptual approachof MARBLL started from this consideration: instead of developingspace-qualified lasers to meet specific system detection requirements,MARBLL concept was led by the idea to design a detection systemmatching the specifications of an existing space-qualified laser(ChemCam) and by the need to guarantee high performances in the harshMartian environment. The mature MARBLL design, which has undergonefive years of Research and Development (R&D), ensures highperformances for a large range of temperature and for any atmosphericcondition (e.g. dust opacity) known to prevail on Mars. The relativedetection method of MARBLL does not require the use of frequencycontrol for both the emitter and the spectral analyzer. MARBLL willbe able to derive wind velocity and orientation with a typicalaccuracy of respectively 0.1 to 10 m/s and 1 to 10◦, a dynamic rangeof ±272 m/s and with a vertical resolution of 50 m up to 1 km withinthe first 5 km above the surface. Aerosol abundance can be retrievedup to 10 km with a vertical resolution ranging from 50 meters to 1500m. Atmospheric dust loading affects MARBLL performances in aquantified way: high dust opacities (>2) reduce the sounding depthcapability by >1 km, but increases SNR in the lowest atmosphericlayers. At the laser wavelength, dust is non-absorbing and allphotons are scattered, maintaining high levels of backscattered fluxeven at high dust opacity. MARBLL thus guarantees that performancesexceed baseline requirements for all dust opacities (from 0.2 to 5),with an optimum estimated around 0.7, lying close to the average dust MARBLL is an optical remote sensing instrument using a maturestate-of- the-art Doppler wind lidar technology specifically designedto operate at the surface of Mars. The instrument includes an emittingdevice (laser) and a spectral analyzer (Mach-Zehnder interferometer).Wind profiling is inferred from the 1064 nm beam emitted by the laserand subsequently backscattered to the telescope by the suspendedaerosols. The received signal has a Doppler shift induced by theradial velocity component of the particles, which is quantified by theinterferometer.Doppler wind lidars (DWL) offer a unique combination of accuracy andspatial resolution making them the most efficient technique to profilewinds in the terrestrial boundary layer (see e.g. Gentry, 2000;Frehlich, 2008). Existing DWL methods usually require aquasi-monochromatic laser emission and a precise frequency lockingbetween the emitter and the spectral analyzer to infer the windDoppler shift. These requirements lead to specific laser designs(single mode emission) associated with delicate servo-loops. Thetechnical readiness level (TRL) of such systems remains too low toplan their use in the upcoming Mars missions. The conceptual approachof MARBLL started from this consideration: instead of developingspace-qualified lasers to meet specific system detection requirements,MARBLL concept was led by the idea to design a detection systemmatching the specifications of an existing space-qualified laser(ChemCam) and by the need to guarantee high performances in the harshMartian environment. The mature MARBLL design, which has undergonefive years of Research and Development (R&D), ensures highperformances for a large range of temperature and for any atmosphericcondition (e.g. dust opacity) known to prevail on Mars. The relativedetection method of MARBLL does not require the use of frequencycontrol for both the emitter and the spectral analyzer. MARBLL willbe able to derive wind velocity and orientation with a typicalaccuracy of respectively 0.1 to 10 m/s and 1 to 10◦, a dynamic rangeof ±272 m/s and with a vertical resolution of 50 m up to 1 km withinthe first 5 km above the surface. Aerosol abundance can be retrievedup to 10 km with a vertical resolution ranging from 50 meters to 1500m. Atmospheric dust loading affects MARBLL performances in aquantified way: high dust opacities (>2) reduce the sounding depthcapability by >1 km, but increases SNR in the lowest atmosphericlayers. At the laser wavelength, dust is non-absorbing and allphotons are scattered, maintaining high levels of backscattered fluxeven at high dust opacity. MARBLL thus guarantees that performancesexceed baseline requirements for all dust opacities (from 0.2 to 5),with an optimum estimated around 0.7, lying close to the average dust MARBLL is an optical remote sensing instrument using a maturestate-of- the-art Doppler wind lidar technology specifically designedto operate at the surface of Mars. The instrument includes an emittingdevice (laser) and a spectral analyzer (Mach-Zehnder interferometer).Wind profiling is inferred from the 1064 nm beam emitted by the laserand subsequently backscattered to the telescope by the suspendedaerosols. The received signal has a Doppler shift induced by theradial velocity component of the particles, which is quantified by theinterferometer.Doppler wind lidars (DWL) offer a unique combination of accuracy andspatial resolution making them the most efficient technique to profilewinds in the terrestrial boundary layer (see e.g. Gentry, 2000;Frehlich, 2008). Existing DWL methods usually require aquasi-monochromatic laser emission and a precise frequency lockingbetween the emitter and the spectral analyzer to infer the windDoppler shift. These requirements lead to specific laser designs(single mode emission) associated with delicate servo-loops. Thetechnical readiness level (TRL) of such systems remains too low toplan their use in the upcoming Mars missions. The conceptual approachof MARBLL started from this consideration: instead of developingspace-qualified lasers to meet specific system detection requirements,MARBLL concept was led by the idea to design a detection systemmatching the specifications of an existing space-qualified laser(ChemCam) and by the need to guarantee high performances in the harshMartian environment. The mature MARBLL design, which has undergonefive years of Research and Development (R&D), ensures highperformances for a large range of temperature and for any atmosphericcondition (e.g. dust opacity) known to prevail on Mars. The relativedetection method of MARBLL does not require the use of frequencycontrol for both the emitter and the spectral analyzer. MARBLL willbe able to derive wind velocity and orientation with a typicalaccuracy of respectively 0.1 to 10 m/s and 1 to 10◦, a dynamic rangeof ±272 m/s and with a vertical resolution of 50 m up to 1 km withinthe first 5 km above the surface. Aerosol abundance can be retrievedup to 10 km with a vertical resolution ranging from 50 meters to 1500m. Atmospheric dust loading affects MARBLL performances in aquantified way: high dust opacities (>2) reduce the sounding depthcapability by >1 km, but increases SNR in the lowest atmosphericlayers. At the laser wavelength, dust is non-absorbing and allphotons are scattered, maintaining high levels of backscattered fluxeven at high dust opacity.
- Published
- 2014
31. Impact of the Sample Preparation on the Organic Compounds Detetected on Mars at JK and CB
- Author
-
Buch, A., Szopa, Cyril, Freissinet, Caroline, Glavin, Daniel, Coll, Patrice, Cabane, Michel, Eigenbrode, J., Miller, K., Martin, M., Summons, R., Archer, D., Brunner, A., Conrad, P., Teinturier, Samuel, Coscia, David, Dworkin, J., Grotzinger, J., Mahaffy, Paul, Mckay, C., Ming, D., Navarro-González, R., Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, IMPEC - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Massachusetts Institute of Technology (MIT), Catholic University of America, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), NASA Ames Research Center (ARC), NASA Johnson Space Center (JSC), NASA, Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), PLANETO - LATMOS, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), and Buch, Arnaud
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; We have confirm the presence of MTBSTFAby-productsin the EGA and GC-TCD-MS background signals. Major part of aromatic detected compoundson marscould be generate from the degradation of the Tenax® trap or from the MTBSTFA reaction. the possible range of products that might be produced by the SAMbackground and the Tenax trap are being elucidated by laboratory studies and it will help clarify which of the compoiunds observed by SAM are indi-geneous.
- Published
- 2014
32. Origin of Chlorobenzene Detected by the Curiosity Rover in Yellowknife Bay: Evidence for Martian Organics in the Sheepbed Mudstone?
- Author
-
Glavin, Daniel, Freissinet, Caroline, Eigenbrode, J., Miller, K., Martin, M., Summons, R., Steele, A., Franz, H., Archer, D., Brinckerhoff, W., Brunner, A., Buch, A., Cabane, Michel, Coll, Patrice, Conrad, P., Coscia, David, Dworkin, J., Grotzinger, J., Kashyap, S., Mahaffy, P., Mckay, C., Ming, D., Navarro-González, R., Sutter, B., Szopa, Cyril, Teinturier, Samuel, NASA Goddard Space Flight Center (GSFC), Massachusetts Institute of Technology (MIT), Catholic University of America, Carnegie Institution for Science [Washington], NASA Johnson Space Center (JSC), NASA, Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), NASA Ames Research Center (ARC), Universidad Nacional Autónoma de México (UNAM), IMPEC - LATMOS, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Buch, Arnaud, Carnegie Institution for Science, and Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)
- Subjects
[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience; The Sample Analysis at Mars (SAM) instrument on the Curiosity rover is designed to determine the inventory of organic and inorganic vola-tiles thermally evolved from solid samples using a combination of evolved gas analysis (EGA), gas chromatography mass spectrometry (GCMS), and tunable laser spectroscopy [1]. The first solid samples analyzed by SAM, a scoop of windblown dust and sand at Rocknest (RN), revealed chlorinated hydrocarbons derived primarily from reactions between a martian oxychlorine phase (e.g. perchlorate) and terrestrial carbon from N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA) vapor present in the SAM instrument background [2]. Chlorobenzene (CBZ) was also identified by SAM GCMS at RN at trace levels (~0.007 nmol) and was attributed to the reaction of chlorine with the Tenax polymers used in the hydrocarbon traps [2]. After the RN analyses, Curiosity traveled to Yellowknife Bay and drilled two separate holes designated John Klein (JK) and Cum-berland (CB). Analyses of JK and CB by both SAM and the CheMin x-ray diffraction instrument revealed a mudstone consisting of ~20 wt% smectite clays [3,4], which on Earth are known to aid the concentration and preservation of organic matter. In addition, higher abundances and a more diverse suite of chlorinated hydrocarbons in CB compared to RN suggests that martian or meteoritic organic sources may be preserved in the mudstone [3]. Here we discuss the SAM EGA and GCMS measurements of volatiles released from the Sheepbed mud-stone. We focus primarily on the elevated CBZ detections at CB and laboratory analog experiments conducted to help determine if CBZ is derived from primarily terrestrial, martian, or a combination of sources.
- Published
- 2014
33. Detection of Nitric Oxide by the Sample Analysis at Mars (SAM) Instrument. Implications for the Presence of Nitrates
- Author
-
Navarro-González, R., Stern, J., Freissinet, Caroline, Franz, H., Eigenbrode, Jennifer, Mckay, C., Coll, Patrice, Sutter, B., Archer, D., McAdam, Amy, Cabane, Michel, Ming, D., Glavin, D., Leshin, L., Wong, M., Atreya, S., Wray, J., Steele, A., Buch, A., Prats, B.D., Szopa, Cyril, Coscia, David, Teinturier, Samuel, Conrad, P., Owen, T., Mahaffy, Paul, Grotzinger, J., Universidad Nacional Autónoma de México (UNAM), NASA Goddard Space Flight Center (GSFC), NASA Ames Research Center (ARC), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Jacobs Technology ESCG, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), PLANETO - LATMOS, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), NASA Johnson Space Center (JSC), NASA, Rensselaer Polytechnic Institute (RPI), University of Michigan [Ann Arbor], University of Michigan System, Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan System-University of Michigan System, Georgia Institute of Technology [Atlanta], Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science [Washington], Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, University of Hawai'i [Honolulu] (UH), California Institute of Technology (CALTECH), Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Carnegie Institution for Science, Buch, Arnaud, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), and IMPEC - LATMOS
- Subjects
[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience; One of the main goals of the Mars Science Laboratory is to determine whether the planet ever had environmental conditions able to support mi-crobial life. Nitrogen is a fundamental element for life, and is present in structural (e.g., proteins), catalytic (e.g., enzymes and ribozymes), energy transfer (e.g.,ATP) and information storage (RNA and DNA) bio-molecules. Planetary models suggest that molecularnitrogen was abundant in the early Martian atmosphere, but was rapidly lost to space by photochemistry, sput-tering [1, 2], impact erosion [3], and oxidized and de-posited to the surface as nitrate [4]. Nitrates are a fun-damental source for nitrogen to terrestrial microorgan-isms. Therefore, the detection of nitrates in soils and rocks is important to assess the habitability of a Mar-tian environment. SAM is capable of detecting nitrates by their thermal decomposition into nitric oxide, NO [5]. Here we analyze the release of NO from soils and rocks examined by the SAM instrument at Gale crater, and discuss its origin.
- Published
- 2014
34. The MARs Boundary Layer Lidar Experiment: Mars Winds at last!
- Author
-
Montmessin, Franck, Patel, M., Forget, F., Bruneau, Didier, Coscia, David, Lewis, S., Flamant, Cyrille, Spiga, A., Määttänen, Anni, Howe, C., Déprez, Grégoire, Bertrand, T., Maurice, S., Kahre, M., Abshire, J., Lorenz, R., Faure, Jean-Baptiste, Clerc, Marie-Sophie, Sengenes, P., Gilbert, Pierre, Madeleine, J.-B., PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), STFC Rutherford Appleton Laboratory (RAL), Science and Technology Facilities Council (STFC), Laboratoire de Météorologie Dynamique (UMR 8539) (LMD), Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École des Ponts ParisTech (ENPC)-École polytechnique (X)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), Université Pierre et Marie Curie - Paris 6 (UPMC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), The Open University [Milton Keynes] (OU), SPACE - LATMOS, Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Brown University, F. Forget and M. Millour, Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-École polytechnique (X)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Département des Géosciences - ENS Paris, École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Astrophysics::Solar and Stellar Astrophysics ,Physics::Atomic Physics ,Physics::Atmospheric and Oceanic Physics - Abstract
MARBLL is an optical remote sensing in- strument using a mature state-of-the-art Doppler wind lidar technology specifically designed to operate at the surface of Mars. The instrument includes an emitting device (laser) and a spectral analyzer (Mach-Zehnder interferometer). Wind profiling is inferred from the 1064 nm beam emit- ted by the laser and subsequently backscattered to the telescope by the suspended aerosols. The received signal has a Doppler shift induced by the radial velocity component of the particles, which is quantified by the interferometer.
- Published
- 2014
35. Gas-Chromatographic analysis of Mars soil samples with the SAM instrument onboard Curiosity - the 359 first sols
- Author
-
Szopa, Cyril, Navarro-Gonzalez, Rafael, Mahaffy, Paul, Buch, Arnaud, Goutail, Jean-Pierre, Cabane, Michel, Glavin, Daniel, Correia, Jean-Jacques, Coll, Patrice, Freissinet, Caroline, Meftah, Mustapha, Coscia, David, Teinturier, Samuel, Brunner, Anna, Bonnet, Jean-Yves, Millan, Maeva, Cardon, Catherine, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), NASA Goddard Space Flight Center (GSFC), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), IMPEC - LATMOS, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), and Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,[PHYS.PHYS.PHYS-AO-PH] Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] - Abstract
International audience; Amongst the SAM suite of instruments, SAM-GC (Gas Chromatograph) is devoted to identify and quantify volatiles evolved from the thermal/chemical treatment of any soil sample collected by the Curiosity rover. The first soil samples analyzed with SAM were composed of windblown dust and sand collected at the Rocknest site, while the second site analyzed was a basin called “Yellowknife Bay” where two holes were drilled (John Klein & Cumberland) and analysis showed these sites to be a fluvio-lacustrine sediment.. For their analysis, these samples were subjected to a pyrolysis at temperatures reaching about 850°C. For SAM-GC and GCMS analyses, different fractions of pyrolysates were collected at different temperature in the ambient-900°C range in order to discriminate potential different volatile fractions present in the solid sample. With the aim to search for potential organic molecules outgassed from the samples, a SAM-GC analytical channel composed of a thermal-desorption injector and a MXT-CLP chromatographic column was used as it was designed for the separation of a wide range of volatile organic molecules. This channel is also equipped with a thermal conductivity detector (TCD) capable to detect the most abundant species (with abundances down to approximately 10-10mol). His channel is thus complementary to the mass spectrometer detection for quantification of such species, as this last instrument does not have linear response in this domain of high abundance, whereas it is significantly more sensitive than the TCD. The results obtained with this instrument first show that the performances of SAM-GC is representative of those obtained during calibrations of the instrument in laboratory, and also that results are repeatable. Hence, the instrument performs nominally, making it the first GCMS running successfully on Mars since the Viking missions (middle of the 70’s). Moreover, the complementarity of GC towards MS is also shown, both by allowing the quantification of the major species detected (as water), and by providing a chromatographic signal, that is well resolved temporally which can be used to improve the QMS signal treatment. In the frame of research of organics, the SAM-GC analyses contribute to the identification of several compounds even at trace levels, giving clues on the chemical content of both loose surface and rock materials. These detections are of course linked to the question of preservation and evolution of organic material in the Mars environment, and this will be discussed in further details.
- Published
- 2014
36. Putative cryomagma interaction with aerosols deposit at Titan's surface
- Author
-
Coll, Patrice, Navarro-Gonzalez, Rafael, Raulin, François, Coscia, David, Ramirez, Sandra I., Buch, Arnaud, Szopa, Cyril, Poch, Olivier, Cabane, Michel, Brassé, Coralie, Cardon, Catherine, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), IMPEC - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Physikalisches Institut [Bern], Universität Bern [Bern], Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), PLANETO - LATMOS, and Universität Bern [Bern] (UNIBE)
- Subjects
[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience; The largest moon of Saturn, Titan, is known for its dense, nitrogen-rich atmosphere. The organic aerosols which are produced in Titan’s atmosphere are of great astrobiological interest, particularly because of their potential evolution when they reach the surface and may interact with putative ammonia-water cryomagma [1]. In this context we have followed the evolution of alkaline pH hydrolysis (25wt% ammonia-water) of Titan aerosol analogues, that have been qualified as representative of Titan’s aerosols [2]. Indeed the first results obtained by the ACP experiment onboard Huygens probe revealed that the main products obtained after thermolysis of Titan’s collected aerosols, were ammonia (NH3) and hydrogen cyanide (HCN). Then performing a direct comparison of the volatiles produced after a thermal treatment done in conditions similar to the ones used by the ACP experiment, we may estimate that the tholins we used are relevant to chemical analogues of Titan’s aerosols, and to note free of oxygen. Taking into account recent studies proposing that the subsurface ocean may contain a lower fraction of ammonia (about 5wt% or less [3]), and assuming the presence of specific gas species [4, 5], in particular CO2 and H2S, trapped in likely internal ocean, we determine a new probable composition of the cryomagma which could potentially interact with deposited Titan’s aerosols. We then carried out different hydrolyses, taking into account this composition, and we established the influence of the hydrolysis temperature on the organic molecules production. References: [1] Mitri et al., 2008. Resurfacing of Titan by ammonia-water cryomagma. Icarus. 196, 216-224. [2] Coll et al. 2013, Can laboratory tholins mimic the chemistry producing Titan's aerosols? A review in light of ACP experimental results, Planetary and Space Science 77, 91-103. [3] Tobie et al. 2012. Titan’s Bulk Composition Constrained by Cassini-Huygens: implication for internal outgassing. The Astrophysical Journal. 752, 125. [4] Hersant et al., 2004. Enrichment in volatiles in the giant planets of the Solar System. Planetary and Space Science. 52, 623-641. [5] Hersant et al., 2008. Interpretation of the carbon abundance in Saturn measured by Cassini. Planetary and Space Science. 56, 1103-1111.
- Published
- 2014
37. Possible Detection of Nitrates on Mars by the Sample Analysis at Mars (SAM) Instrument
- Author
-
Navarro-Gonzalez, Rafael, Stern, J., Sutter, B., Archer, D., Mcadam, Amy, Franz, H., Mckay, C., Coll, Patrice, Cabane, Michel, Ming, D., Raulin, François, Brunner, A., Glavin, Daniel, Eigenbrode, J., Jones, J., Freissinet, Caroline, Leshin, L., Wong, M., Atreya, S., Wray, J., Steele, A., Buch, A., Prats, B.D., Szopa, Cyril, Coscia, David, Teinturier, Samuel, Conrad, P., Mahaffy, Paul, Martín-Torres, F., Zorzano-Mier, M. P., Grotzinger, J. P., Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), NASA Goddard Space Flight Center (GSFC), Jacobs Technology ESCG, NASA Ames Research Center (ARC), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), NASA Johnson Space Center (JSC), NASA, Rensselaer Polytechnic Institute (RPI), University of Michigan [Ann Arbor], University of Michigan System, Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan System-University of Michigan System, Georgia Institute of Technology [Atlanta], Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), IMPEC - LATMOS, Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC), Buch, Arnaud, and Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; Introduction: Planetary models suggest that nitrogen was abundant in the early Martian atmosphere as dinitrogen (N 2). However, it has been lost by sputtering and photochemical loss to space [1, 2], impact erosion [3], and chemical oxidation to nitrates [4]. Nitrates , produced early in Mars' history, are later decomposed back into N 2 by the current impact flux [5], making possible a nitrogen cycle on Mars. It is estimated that a layer of about 3 m of pure NaNO 3 should be distributed globally on Mars [5]. Nitrates are a fundamental source for nitrogen to terrestrial microorganisms. Therefore, the detection of soil nitrates is important to assess habitability in the Martian environment. The only previous mission that was designed to search for soil nitrates was the Phoenix mission but was unable to detect evolved N-containing species by TEGA and the MECA WCL [6]. Nitrates have been tentatively identified in the Nakhla meteorite [7]. The purpose of this work is to determine if nitrates were detected in first solid sample (Rocknest) in Gale Crater examined by the SAM instrument. Materials and Methods: Samples collected from Rocknest, located in Gale Crater, which consists of an inactive, sandy wind drift mantled with dust, were analyzed by the SAM instrument. Prior to sample analysis, a blank was run using an empty quartz cup to characterize the background of the SAM instrument. The quartz cup was sealed inside the pyrolysis oven and heated to ~840°C at a rate of 35°C/min under a He carrier gas flow rate of 1.5 cm 3 /min and at an oven pressure of ~30 mbar. A small fraction of the gas released from the cup was measured directly by electron impact quadrupole mass spectrometry (QMS mass range 2-535 Da, resolution 0.1 Da). Then four samples of Rocknest bedform materials < 150 μm diameter size fraction (~20 mg) were examined by SAM. A thermal analyzer (Netzsch STA 449 F1 Jupiter Simultaneous TG/DSC) coupled to a mass spectrometer (Netzsch QMS 403 C Aeolos) was used in the laboratory to heat samples upto 1200°C at a rate of 20°C/min under a He
- Published
- 2013
38. Detection of Organics at Mars: How Wet Chemistry Onboard SAM Helps
- Author
-
Buch, A., Freissinet, Caroline, Szopa, Cyril, Glavin, Daniel, Coll, Patrice, Cabane, Michel, Eigenbrode, Jennifer, Navarro-González, Rafael, Stern, J., Coscia, David, Teinturier, Samuel, Dworkin, J., Mahaffy, Paul, Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, NASA Goddard Space Flight Center (GSFC), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), IMPEC - LATMOS, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), and Buch, Arnaud
- Subjects
[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU.STU.PG] Sciences of the Universe [physics]/Earth Sciences/Paleontology ,[SDU.STU.PG]Sciences of the Universe [physics]/Earth Sciences/Paleontology ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience; For thefirst time in the history of space explora-tion, a mission of interest to astrobiology could be able to analyze refractory organic compounds in the soil of Mars. Wet chemistry experiment allow organic com-ponents to be altered in such a way that improves there detection either by releasing the compounds from sam-ple matricies or by changing the chemical structure to be amenable to analytical conditions. The latter is par-ticular important when polar compounds are present. Sample Analysis at Mars (SAM), on theCuriosity rov-er of the Mars Science Laboratory mission, has onboard two wet chemistry experiments: derivatization [1-2] and thermochemolysis [3-4]. Here we report on the nature of the MTBSTFA derivatization experiment on SAM, the detection of MTBSTFA in initial SAM results, and the implications of this detection
- Published
- 2013
39. Curiosity's Sample Analysis at Mars (Sam) Investigation: Overview of Results from the First 120 Sols on Mars
- Author
-
Mahaffy, Paul, Cabane, Michel, Webster, C., Archer, P., Atreya, S., Benna, M., Brinckerhoff, W., Brunner, A., Buch, A., Coll, Patrice, Conrad, P., Coscia, David, Dobson, N., Dworkin, J., Eigenbrode, J., Farley, K., Flesch, G., Franz, H., Freissinet, Caroline, Glavin, Daniel, Gorevan, S., Grotzinger, J., Harpold, D., Hengemihle, J., Jaeger, F., Johnson, C., Johnson, M., Jones, J., Lefavor, M., Leshin, L., Lyness, E., Malespin, C., Manning, H., Martin, D., Mcadam, A., Mckay, C., Miller, K., Ming, D., Morris, R., Navarro-González, R., Niles, P., Nolan, T., Owen, T., Pavolov, A., Prats, B., Pepin, R., Raaen, E., Raulin, François, Steele, A., Stern, J., Squyres, S., Sutter, B., Summons, R., Sumner, D., Szopa, Cyril, Tan, F., Teinturier, Samuel, Trainer, M., Wong, M., Wray, J., NASA Goddard Space Flight Center (GSFC), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), NASA Johnson Space Center (JSC), NASA, Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Division of Geological and Planetary Sciences [Pasadena], California Institute of Technology (CALTECH), Honeybee Robotics Ltd, Concordia College [MN], NASA Ames Research Center (ARC), Massachusetts Institute of Technology (MIT), Universidad Nacional Autónoma de México (UNAM), Astromaterials Research and Exploration Science (ARES), NASA-NASA, Institute for Astronomy [Honolulu], University of Hawai‘i [Mānoa] (UHM), University of Minnesota [Twin Cities] (UMN), University of Minnesota System, Carnegie Institution for Science [Washington], Cornell University [New York], Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of Michigan System, Georgia Institute of Technology [Atlanta], IMPEC - LATMOS, Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), University of Minnesota [Twin Cities], Cornell University, Buch, Arnaud, Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), and Carnegie Institution for Science
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology - Abstract
International audience; Overview of results from Curiosity's Sample Analysis at Mars (SAM) investigation during the first 120 martian sols are summarized
- Published
- 2013
40. Investigating the Origin of Chlorohydrocarbons Detected by the Sample Analysis at Mars (SAM) Instrument at Rocknest
- Author
-
Glavin, Daniel, Archer, D., Brunner, A., Buch, A., Cabane, Michel, Coll, Patrice, Conrad, P., Coscia, David, Dworkin, J., Eigenbrode, Jennifer, Freissinet, Caroline, Mahaffy, Paul, Martin, M., Mckay, C., Miller, K., Ming, D., Navarro-González, R., Steele, A., Summons, R., Sutter, B., Szopa, Cyril, Teinturier, Samuel, Buch, Arnaud, NASA Goddard Space Flight Center (GSFC), NASA Johnson Space Center (JSC), NASA, Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, IMPEC - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Catholic University of America, NASA Ames Research Center (ARC), Massachusetts Institute of Technology (MIT), Astromaterials Research and Exploration Science (ARES), NASA-NASA, Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), Carnegie Institution for Science [Washington], Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Jacobs Technology ESCG, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), PLANETO - LATMOS, Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), and Carnegie Institution for Science
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU.ASTR.IM] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,[SDU.STU.PL] Sciences of the Universe [physics]/Earth Sciences/Planetology ,ComputingMilieux_MISCELLANEOUS ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience
- Published
- 2013
41. Gas-chromatographic analysis of Mars soil samples at Rocknest site with the SAM instrument onboard Curiosity
- Author
-
Cabane, Michel, Coll, Patrice, Szopa, Cyril, Coscia, David, Buch, Aranaud, Teinturier, Samuel, Navarro-Gonzalez, Rafael, Gaboriaud, Alain, Mahaffy, Paul, and Martin-Torres, Javier
- Subjects
Rymd- och flygteknik ,Aerospace Engineering - Abstract
Upprättat; 2013; 20150701 (ninhul)
- Published
- 2013
42. Wet Chemistry on SAM: How it Helps to Detect Organics on Mars
- Author
-
Buch, Aranaud, Freissinet, Caroline, Szopa, Cyril, Glavin, Danny, Coll, Patrice, Cabane, Michel, Eigenbrode, Jen, Navarro-Gonzalez, Rafael, Stern, Jen, Coscia, David, Teinturier, Samuel, Dworkin, Jason, Mahaffy, Paul, and Martin-Torres, Javier
- Subjects
Rymd- och flygteknik ,Aerospace Engineering - Abstract
Upprättat; 2013; 20150701 (ninhul)
- Published
- 2013
43. Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater
- Author
-
Glavin, Daniel P., Freissinet, Caroline, Miller, Kristen E., Eigenbrode, Jennifer L., Brunner, Anna E., Buch, Arnaud, Sutter, Brad, Douglas Archer Jr., P., Atreya, Sushil K., Brinckerhoff, William B., Cabane, Michel, Coll, Patrice, Conrad, Pamela G., Coscia, David, Dworkin, Jason P., Franz, Heather B., Grotzinger, John P., Leshin, Laurie A., Martin, Mildred G., Mckay, Christopher, Ming, Douglas W., Navarro-González, Rafael, Pavlov, Alexander, Steele, Andrew, Summons, Roger E., Szopa, Cyril, Teinturier, Samuel, Mahaffy, Paul R., NASA Goddard Space Flight Center (GSFC), Department of Earth, Atmospheric and Planetary Sciences [MIT, Cambridge] (EAPS), Massachusetts Institute of Technology (MIT), Center for Research and Exploration in Space Science and Technology [GSFC] (CRESST), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, NASA Johnson Space Center (JSC), NASA, Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS), University of Michigan [Ann Arbor], University of Michigan System-University of Michigan System, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), Rensselaer Polytechnic Institute (RPI), Catholic University of America, NASA Ames Research Center (ARC), Laboratorio de Química de Plasmas y Estudios Planetarios [Mexico], Instituto de Ciencias Nucleares [Mexico], Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)-Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM), Geophysical Laboratory [Carnegie Institution], Carnegie Institution for Science, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Universidad Nacional Autónoma de México (UNAM)-Universidad Nacional Autónoma de México (UNAM), Carnegie Institution for Science [Washington], IMPEC - LATMOS, and Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Sample Analysis at Mars ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Mars Science Laboratory ,MTBSTFA ,perchlorates ,chlorohydrocarbons ,Rocknest soil - Abstract
International audience; A single scoop of the Rocknest aeolian deposit was sieved (2 released from the Rocknest sample and the decomposition of a product of N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a chemical whose vapors were released from a derivatization cup inside SAM. The best candidate for the oxychlorine compounds in Rocknest is a hydrated calcium perchlorate (Ca(ClO4)2*nH2O), based on the temperature release of O2 that correlates with the release of the chlorinated hydrocarbons measured by SAM, although other chlorine-bearing phases are being considered. Laboratory analog experiments suggest that the reaction of Martian chlorine from perchlorate decomposition with terrestrial organic carbon from MTBSTFA during pyrolysis can explain the presence of three chloromethanes and a chloromethylpropene detected by SAM. Chlorobenzene may be attributed to reactions of Martian chlorine released during pyrolysis with terrestrial benzene or toluene derived from 2,6-diphenylphenylene oxide (Tenax) on the SAM hydrocarbon trap. At this time we do not have definitive evidence to support a nonterrestrial carbon source for these chlorinated hydrocarbons, nor do we exclude the possibility that future SAM analyses will reveal the presence of organic compounds native to the Martian regolith.
- Published
- 2013
- Full Text
- View/download PDF
44. Search for organic molecules on Mars with the Gas Chromatograph-Mass Spectrometer of the Sample Analysis at Mars experiment onboard the MSL 2011 Curiosity rover
- Author
-
Szopa, Cyril, François, Pascaline, Coll, Patrice J., Cabane, Michel, Coscia, David, Eigenbrode, Jennifer L., Teinturier, Samuel, Stalport, Fabien, Buch, Arnaud, Mahaffy, Paul R., Glavin, Daniel Patrick, Freissinet, Caroline, PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM), CentraleSupélec, Cardon, Catherine, IMPEC - LATMOS, and Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.ASTR.EP] Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[PHYS.ASTR.EP]Physics [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,[SDU.ASTR.EP] Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
In past times, life might have emerged under Martian conditions milder than the present ones, and left some remnants at the surface. Even if this did not happen, prebiotic molecules may have been preserved in the soil, and they might be similar to those that prevailed on the Earth surface some 3.5 to 4 billion years ago. NASA's MSL2011 rover Curiosity will explore the surface and subsurface of Mars, seeking traces of prebiotic or biological activity. Organic signatures are among the main signatures of interest in this frame, and they will be among the main targets of the Gas Chromatograph Quadrupole Mass Spectrometer (GC-QMS) which constitutes the core of the Sample Analysis at Mars (SAM) analytical laboratory, developed by the NASA/GSFC in collaboration with the University of Paris (Fr) and the JPL. The main goal of this instrumentation is indeed to determine molecular abundances and isotopic ratios of organic molecules present in the collected samples, by analyzing gases either sampled from the atmosphere, or obtained from soil processing, either by physical heating or chemical reactions. In order to prepare for the interpretation of the data obtained in situ with the GCQMS of SAM, and due to the complexity of this instrumentation, a number of calibrations are required to determine the exact behaviour of each part of this instrumentation, that is required to correctly treat the signal and obtain a correct interpretation of it. In order to prepare the SAM-GC in situ results treatment and interpretation, it is necessary: (1) to determine the instrument ability to detect targets molecules under the instrument operating conditions and (2) to create data bases to help for the identification and quantification of the molecules that could be detected with SAM. With this aim we first selected molecules which might be analyzed with SAM-GC using the following criteria: (1) abundance at the Mars surface (2) astrobiological interest, (3) formation during the sample preparation. Then we characterized these target molecules with laboratory instrumentation using discrete spare components of the GC flight model ; in a second step, we used a SAM-GC spare model, in a vacuum chamber roughly reproducing the environmental conditions inside the Curiosity rover. A following step will be to carry out similar experiments with the whole SAM testbed located at the NASA/GSFC. This paper will present an overview of the analytical capabilities of the GC-QMS, with a focus on the GC part, relying on the calibration described previously. In addition, we will present analyses done on Atacama soil samples, Mars soil analogue, to get an evaluation of the SAM GC performances with a natural sample.
- Published
- 2012
45. Huygens Probe Aerosol Collector Pyrolyser Experiment
- Author
-
Israel, Guy, Cabane, Michel, Brun, Jean-François, Niemann, H., Way, S., Riedler, W., Steller, M., Raulin, François, Coscia, David, Service d'aéronomie (SA), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), NASA Goddard Space Flight Center (GSFC), Space Research Institute of Austrian Academy of Sciences (IWF), Austrian Academy of Sciences (OeAW), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Subjects
Pump Unit ,HUYGENS Probe ,Solid Phase Materia ,Pyrolysis ,Gate Valve ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] - Abstract
International audience; ACP's main objective is the chemical analysis of the aerosols in Titan's atmosphere. For this purpose, it will sample the aerosols during descent and prepare the collected matter (by evaporation, pyrolysis and gas products transfer) for analysis by the Huygens Gas Chromatograph Mass Spectrometer (GCMS). A sampling system is required for sampling the aerosols in the 135'32 km and 22'17 km altitude regions of Titan's atmosphere. A pump unit is used to force the gas flow through a filter. In its sampling position, the filter front face extends a few mm beyond the inlet tube. The oven is a pyrolysis furnace where a heating element can heat the filter and hence the sampled aerosols to 250 °C or 600 °C. The oven contains the filter, which has a thimble-like shape (height 28 mm). For transferring effluent gas and pyrolysis products to GCMS, the carrier gas is a labeled nitrogen 15N2, to avoid unwanted secondary reactions with Titan's atmospheric nitrogen.Aeraulic tests under cold temperature conditions were conducted by using a cold gas test system developed by ONERA. The objective of the test was to demonstrate the functional ability of the instrument during the descent of the probe and to understand its thermal behavior, that is to test the performance of all its components, pump unit and mechanisms.In order to validate ACP's scientific performance, pyrolysis tests were conducted at LISA on solid phase material synthesized from experimental simulation. The chromatogram obtained by GCMS analysis shows many organic compounds. Some GC peaks appear clearly from the total mass spectra, with specific ions well identified thanks to the very high sensitivity of the mass spectrometer. The program selected for calibrating the flight model is directly linked to the GCMS calibration plan. In order not to pollute the two flight models with products of solid samples such as tholins, we excluded any direct pyrolysis tests through the ACP oven during the first phase of the calibration. Post probe descent simulation of flight results are planned, using the much representative GCMS and ACP spare models.
- Published
- 2002
- Full Text
- View/download PDF
46. Scientific performance of the Gas Chromatograph Neutral Gas Mass Spectrometer for the Luna-Resurs Mission.
- Author
-
Fausch, Rico, Wurz, Peter, Tulej, Marek, Hofer, Lukas, Buch, Arnaud, Cabane, Michel, Coll, Patrice, Coscia, David, Gerasimov, Mikhail, Lasi, Davide, Sapgir, Alexandr, Szopa, Cyril, and Zaitsev, Maxim
- Published
- 2018
47. Isotope ratios of H, C, and O in CO2 and H2O of the martian atmosphere.
- Author
-
Webster CR, Mahaffy PR, Flesch GJ, Niles PB, Jones JH, Leshin LA, Atreya SK, Stern JC, Christensen LE, Owen T, Franz H, Pepin RO, Steele A, Achilles C, Agard C, Alves Verdasca JA, Anderson R, Anderson R, Archer D, Armiens-Aparicio C, Arvidson R, Atlaskin E, Aubrey A, Baker B, Baker M, Balic-Zunic T, Baratoux D, Baroukh J, Barraclough B, Bean K, Beegle L, Behar A, Bell J, Bender S, Benna M, Bentz J, Berger G, Berger J, Berman D, Bish D, Blake DF, Blanco Avalos JJ, Blaney D, Blank J, Blau H, Bleacher L, Boehm E, Botta O, Böttcher S, Boucher T, Bower H, Boyd N, Boynton B, Breves E, Bridges J, Bridges N, Brinckerhoff W, Brinza D, Bristow T, Brunet C, Brunner A, Brunner W, Buch A, Bullock M, Burmeister S, Cabane M, Calef F, Cameron J, Campbell J, Cantor B, Caplinger M, Caride Rodríguez J, Carmosino M, Carrasco Blázquez I, Charpentier A, Chipera S, Choi D, Clark B, Clegg S, Cleghorn T, Cloutis E, Cody G, Coll P, Conrad P, Coscia D, Cousin A, Cremers D, Crisp J, Cros A, Cucinotta F, d'Uston C, Davis S, Day M, de la Torre Juarez M, DeFlores L, DeLapp D, DeMarines J, DesMarais D, Dietrich W, Dingler R, Donny C, Downs B, Drake D, Dromart G, Dupont A, Duston B, Dworkin J, Dyar MD, Edgar L, Edgett K, Edwards C, Edwards L, Ehlmann B, Ehresmann B, Eigenbrode J, Elliott B, Elliott H, Ewing R, Fabre C, Fairén A, Farley K, Farmer J, Fassett C, Favot L, Fay D, Fedosov F, Feldman J, Feldman S, Fisk M, Fitzgibbon M, Floyd M, Flückiger L, Forni O, Fraeman A, Francis R, François P, Freissinet C, French KL, Frydenvang J, Gaboriaud A, Gailhanou M, Garvin J, Gasnault O, Geffroy C, Gellert R, Genzer M, Glavin D, Godber A, Goesmann F, Goetz W, Golovin D, Gómez Gómez F, Gómez-Elvira J, Gondet B, Gordon S, Gorevan S, Grant J, Griffes J, Grinspoon D, Grotzinger J, Guillemot P, Guo J, Gupta S, Guzewich S, Haberle R, Halleaux D, Hallet B, Hamilton V, Hardgrove C, Harker D, Harpold D, Harri AM, Harshman K, Hassler D, Haukka H, Hayes A, Herkenhoff K, Herrera P, Hettrich S, Heydari E, Hipkin V, Hoehler T, Hollingsworth J, Hudgins J, Huntress W, Hurowitz J, Hviid S, Iagnemma K, Indyk S, Israël G, Jackson R, Jacob S, Jakosky B, Jensen E, Jensen JK, Johnson J, Johnson M, Johnstone S, Jones A, Joseph J, Jun I, Kah L, Kahanpää H, Kahre M, Karpushkina N, Kasprzak W, Kauhanen J, Keely L, Kemppinen O, Keymeulen D, Kim MH, Kinch K, King P, Kirkland L, Kocurek G, Koefoed A, Köhler J, Kortmann O, Kozyrev A, Krezoski J, Krysak D, Kuzmin R, Lacour JL, Lafaille V, Langevin Y, Lanza N, Lasue J, Le Mouélic S, Lee EM, Lee QM, Lees D, Lefavor M, Lemmon M, Lepinette Malvitte A, Léveillé R, Lewin-Carpintier É, Lewis K, Li S, Lipkaman L, Little C, Litvak M, Lorigny E, Lugmair G, Lundberg A, Lyness E, Madsen M, Maki J, Malakhov A, Malespin C, Malin M, Mangold N, Manhes G, Manning H, Marchand G, Marín Jiménez M, Martín García C, Martin D, Martin M, Martínez-Frías J, Martín-Soler J, Martín-Torres FJ, Mauchien P, Maurice S, McAdam A, McCartney E, McConnochie T, McCullough E, McEwan I, McKay C, McLennan S, McNair S, Melikechi N, Meslin PY, Meyer M, Mezzacappa A, Miller H, Miller K, Milliken R, Ming D, Minitti M, Mischna M, Mitrofanov I, Moersch J, Mokrousov M, Molina Jurado A, Moores J, Mora-Sotomayor L, Morookian JM, Morris R, Morrison S, Mueller-Mellin R, Muller JP, Muñoz Caro G, Nachon M, Navarro López S, Navarro-González R, Nealson K, Nefian A, Nelson T, Newcombe M, Newman C, Newsom H, Nikiforov S, Nixon B, Noe Dobrea E, Nolan T, Oehler D, Ollila A, Olson T, de Pablo Hernández MÁ, Paillet A, Pallier E, Palucis M, Parker T, Parot Y, Patel K, Paton M, Paulsen G, Pavlov A, Pavri B, Peinado-González V, Peret L, Perez R, Perrett G, Peterson J, Pilorget C, Pinet P, Pla-García J, Plante I, Poitrasson F, Polkko J, Popa R, Posiolova L, Posner A, Pradler I, Prats B, Prokhorov V, Purdy SW, Raaen E, Radziemski L, Rafkin S, Ramos M, Rampe E, Raulin F, Ravine M, Reitz G, Rennó N, Rice M, Richardson M, Robert F, Robertson K, Rodriguez Manfredi JA, Romeral-Planelló JJ, Rowland S, Rubin D, Saccoccio M, Salamon A, Sandoval J, Sanin A, Sans Fuentes SA, Saper L, Sarrazin P, Sautter V, Savijärvi H, Schieber J, Schmidt M, Schmidt W, Scholes D, Schoppers M, Schröder S, Schwenzer S, Sebastian Martinez E, Sengstacken A, Shterts R, Siebach K, Siili T, Simmonds J, Sirven JB, Slavney S, Sletten R, Smith M, Sobrón Sánchez P, Spanovich N, Spray J, Squyres S, Stack K, Stalport F, Stein T, Stewart N, Stipp SL, Stoiber K, Stolper E, Sucharski B, Sullivan R, Summons R, Sumner D, Sun V, Supulver K, Sutter B, Szopa C, Tan F, Tate C, Teinturier S, ten Kate I, Thomas P, Thompson L, Tokar R, Toplis M, Torres Redondo J, Trainer M, Treiman A, Tretyakov V, Urqui-O'Callaghan R, Van Beek J, Van Beek T, VanBommel S, Vaniman D, Varenikov A, Vasavada A, Vasconcelos P, Vicenzi E, Vostrukhin A, Voytek M, Wadhwa M, Ward J, Weigle E, Wellington D, Westall F, Wiens RC, Wilhelm MB, Williams A, Williams J, Williams R, Williams RB, Wilson M, Wimmer-Schweingruber R, Wolff M, Wong M, Wray J, Wu M, Yana C, Yen A, Yingst A, Zeitlin C, Zimdar R, and Zorzano Mier MP
- Abstract
Stable isotope ratios of H, C, and O are powerful indicators of a wide variety of planetary geophysical processes, and for Mars they reveal the record of loss of its atmosphere and subsequent interactions with its surface such as carbonate formation. We report in situ measurements of the isotopic ratios of D/H and (18)O/(16)O in water and (13)C/(12)C, (18)O/(16)O, (17)O/(16)O, and (13)C(18)O/(12)C(16)O in carbon dioxide, made in the martian atmosphere at Gale Crater from the Curiosity rover using the Sample Analysis at Mars (SAM)'s tunable laser spectrometer (TLS). Comparison between our measurements in the modern atmosphere and those of martian meteorites such as ALH 84001 implies that the martian reservoirs of CO2 and H2O were largely established ~4 billion years ago, but that atmospheric loss or surface interaction may be still ongoing.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.