1. Greedy Semantic Local Search for Small Solutions
- Author
-
Marc Schoenauer, Robyn Ffrancon, Machine Learning and Optimisation (TAO), Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Paris-Sud - Paris 11 (UP11)-Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-CentraleSupélec, Ffrancon, Robyn, Laboratoire de Recherche en Informatique (LRI), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Subjects
Fractal tree index ,[INFO.INFO-AI] Computer Science [cs]/Artificial Intelligence [cs.AI] ,AVL tree ,K-ary tree ,Segment tree ,Exponential tree ,0102 computer and information sciences ,02 engineering and technology ,Interval tree ,01 natural sciences ,Search tree ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] ,Combinatorics ,Tree structure ,010201 computation theory & mathematics ,0202 electrical engineering, electronic engineering, information engineering ,020201 artificial intelligence & image processing ,Algorithm ,Mathematics - Abstract
International audience; Semantic Backpropagation (SB) was introduced in GP so as to take into account the semantics of a GP tree at all intermediate states of the program execution, i.e., at each node of the tree. The idea is to compute the optimal " should-be " values each subtree should return, whilst assuming that the rest of the tree is unchanged, and to choose a subtree that matches as well as possible these target values. A single tree is evolved by iteratively replacing one of its nodes with the best subtree from a static library according to this local fitness, with tree size as a secondary criterion. Previous results for standard Boolean GP benchmarks that have been obtained by the authors with another variant of SB are improved in term of tree size. SB is then applied for the first time to categorical GP benchmarks, and outperforms all known results to date for three variable finite algebras.
- Published
- 2015