1. Measurements of electron transport in liquid and gas Xenon using a laser-driven photocathode
- Author
-
R. Saldanha, I. Ostrovskiy, D. Kodroff, M. J. Dolinski, S. Rescia, John L. Orrell, T. Daniels, P. Gautam, D. Fairbank, Z. Li, E. Caden, E. V. Hansen, Gerard Visser, J. Watkins, Mike Richman, O. Njoya, R. MacLellan, He-Run Yang, A. Iverson, Triveni Rao, K. Skarpaas Viii, Liang Yang, R. Tsang, Gabriele Giacomini, A. Jamil, Pengpeng Lv, O. Nusair, R. Krücken, Shu Li, J. Echevers, Yu-Guang Zhou, Sergio Ferrara, B. Chana, Y. Lan, M. L. di Vacri, U. Wichoski, T. Wager, J. P. Brodsky, C. Vivo-Vilches, I. J. Arnquist, D. Beck, Thilo Michel, Y-R Yen, T. Tsang, T. Tolba, J. Runge, Yuehe Lin, T. Ziegler, Qun-Yao Wang, P. Nakarmi, Guofu Cao, M. Hughes, Jens Dilling, R. Fontaine, David Leonard, M. Heffner, Angelo Dragone, J. L. Vuilleumier, M. Walent, S. Al Kharusi, I. Badhrees, M. Tarka, Thomas Koffas, W. M. Fairbank, B. G. Lenardo, S. Viel, Arun Kumar Soma, T. Brunner, D. Goeldi, L. J. Kaufman, T. Stiegler, Samuele Sangiorgio, Xuan Wu, K. S. Kumar, S. Parent, M. Elbeltagi, M. Coon, K. G. Leach, David Moore, Wei Wei, Qing Xia, J. Farine, G. S. Ortega, Cory T. Overman, Wei Wu, R.J. Newby, P. C. Rowson, S. X. Wu, S. J. Daugherty, Serge A. Charlebois, A. House, G. St-Hilaire, S. Feyzbakhsh, P. S. Barbeau, A. Robinson, T. Bhatta, V. A. Belov, A.C. Odian, O. Zeldovich, Eric W. Hoppe, A. Piepke, J. Todd, L. Darroch, Y. Y. Ding, M. Oriunno, C. Chambers, A. Pocar, V.N. Stekhanov, B. T. Cleveland, T. Rossignol, A. Kuchenkov, M. J. Jewell, Veljko Radeka, X. S. Jiang, C. Licciardi, G. Gallina, A. Der Mesrobian-Kabakian, V. Veeraraghavan, A. Fucarino, Giorgio Gratta, M. Chiu, K. Murray, Gisela Anton, K. Odgers, E. Raguzin, J. Hossl, R. DeVoe, W. R. Cen, M. Medina-Peregrina, R. Gornea, F. Retiere, B. Mong, M. Wagenpfeil, J. Dalmasson, M. Ward, G. S. Li, X.L. Sun, J. B. Zhao, A. Larson, A. Craycraft, Ethan Brown, C.R. Natzke, A. Karelin, Jean-Francois Pratte, Z. Ning, T. I. Totev, A. De St. Croix, Lorenzo Fabris, N. Roy, L. Cao, F. Nolet, T. McElroy, F. Vachon, L. J. Wen, and Marc Weber
- Subjects
Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,chemistry.chemical_element ,Electron ,medicine.disease_cause ,7. Clean energy ,01 natural sciences ,Photocathode ,Xenon ,Electric field ,0103 physical sciences ,medicine ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Instrumentation ,Nuclear Experiment ,Physics ,Argon ,010308 nuclear & particles physics ,Instrumentation and Detectors (physics.ins-det) ,Photoelectric effect ,chemistry ,Quantum efficiency ,High Energy Physics::Experiment ,Atomic physics ,Ultraviolet - Abstract
Measurements of electron drift properties in liquid and gaseous xenon are reported. The electrons are generated by the photoelectric effect in a semi-transparent gold photocathode driven in transmission mode with a pulsed ultraviolet laser. The charges drift and diffuse in a small chamber at various electric fields and a fixed drift distance of 2.0 cm. At an electric field of 0.5 kV/cm, the measured drift velocities and corresponding temperature coefficients respectively are 1 . 97 ± 0 . 04 m m ∕ μ s and ( − 0 . 69 ± 0 . 05 ) %/K for liquid xenon, and 1 . 42 ± 0 . 03 m m ∕ μ s and ( + 0 . 11 ± 0 . 01 ) %/K for gaseous xenon at 1.5 bar. In addition, we measure longitudinal diffusion coefficients of 25 . 7 ± 4 . 6 cm 2 /s and 149 ± 23 cm 2 /s, for liquid and gas, respectively. The quantum efficiency of the gold photocathode is studied at the photon energy of 4.73 eV in liquid and gaseous xenon, and vacuum. These charge transport properties and the behavior of photocathodes in a xenon environment are important in designing and calibrating future large scale noble liquid detectors.
- Published
- 2019