20 results on '"Gaunitz C"'
Search Results
2. Ancient genomics support deep divergence between Eastern and Western Mediterranean Indo-European languages.
- Author
-
Yediay FE, Kroonen G, Sabatini S, Frei KM, Frank AB, Pinotti T, Wigman A, Thorsø R, Vimala T, McColl H, Moutafi I, Altinkaya I, Ramsøe A, Gaunitz C, Renaud G, Martin AM, Demeter F, Scorrano G, Canci A, Fischer P, Duyar I, Serhal C, Varzari A, Türkteki M, O'Shea J, Rahmstorf L, Polat G, Atamtürk D, Vinner L, Omura S, Matsumura K, Cao J, Valeur Seersholm F, Morillo Leon JM, Voutsaki S, Orgeolet R, Burke B, Herrmann NP, Recchia G, Corazza S, Borgna E, Sampò MC, Trucco F, Pando AP, Schjellerup Jørkov ML, Courtaud P, Peake R, Bao JFG, Parditka G, Stenderup J, Sjögren KG, Staring J, Olsen L, Deyneko IV, Pálfi G, Aldana PML, Burns B, Paja L, Mühlenbock C, Cavazzuti C, Cazzella A, Lagia A, Lambrinoudakis V, Kolonas L, Rambach J, Sava E, Agulnikov S, Castañeda Fernández V, Broné M, Peña Romo V, Molina González F, Cámara Serrano JA, Jiménez Brobeil S, Nájera Molino T, Rodríguez Ariza MO, Galán Saulnier C, González Martín A, Cauwe N, Mordant C, Roscio M, Staniaszek L, Tafuri MA, Yıldırım T, Salzani L, Sand Korneliussen T, Moreno-Mayar JV, Allentoft ME, Sikora M, Nielsen R, Kristiansen K, and Willerslev E
- Abstract
The Indo-European languages are among the most widely spoken in the world, yet their early diversification remains contentious
1-5 . It is widely accepted that the spread of this language family across Europe from the 5th millennium BP correlates with the expansion and diversification of steppe-related genetic ancestry from the onset of the Bronze Age6,7 . However, multiple steppe-derived populations co-existed in Europe during this period, and it remains unclear how these populations diverged and which provided the demographic channels for the ancestral forms of the Italic, Celtic, Greek, and Armenian languages8,9 . To investigate the ancestral histories of Indo-European-speaking groups in Southern Europe, we sequenced genomes from 314 ancient individuals from the Mediterranean and surrounding regions, spanning from 5,200 BP to 2,100 BP, and co-analysed these with published genome data. We additionally conducted strontium isotope analyses on 224 of these individuals. We find a deep east-west divide of steppe ancestry in Southern Europe during the Bronze Age. Specifically, we show that the arrival of steppe ancestry in Spain, France, and Italy was mediated by Bell Beaker (BB) populations of Western Europe, likely contributing to the emergence of the Italic and Celtic languages. In contrast, Armenian and Greek populations acquired steppe ancestry directly from Yamnaya groups of Eastern Europe. These results are consistent with the linguistic Italo-Celtic10,11 and Graeco-Armenian1,12,13 hypotheses accounting for the origins of most Mediterranean Indo-European languages of Classical Antiquity. Our findings thus align with specific linguistic divergence models for the Indo-European language family while contradicting others. This underlines the power of ancient DNA in uncovering prehistoric diversifications of human populations and language communities.- Published
- 2024
- Full Text
- View/download PDF
3. Repeated plague infections across six generations of Neolithic Farmers.
- Author
-
Seersholm FV, Sjögren KG, Koelman J, Blank M, Svensson EM, Staring J, Fraser M, Pinotti T, McColl H, Gaunitz C, Ruiz-Bedoya T, Granehäll L, Villegas-Ramirez B, Fischer A, Price TD, Allentoft ME, Iversen AKN, Axelsson T, Ahlström T, Götherström A, Storå J, Kristiansen K, Willerslev E, Jakobsson M, Malmström H, and Sikora M
- Subjects
- Female, Humans, Male, Cemeteries history, Genome, Bacterial genetics, History, Ancient, Phylogeny, Scandinavian and Nordic Countries epidemiology, Time Factors, Virulence Factors genetics, Farmers history, Genomics, Pedigree, Plague epidemiology, Plague history, Plague microbiology, Plague mortality, Population Dynamics, Yersinia pestis genetics, Yersinia pestis isolation & purification
- Abstract
In the period between 5,300 and 4,900 calibrated years before present (cal. BP), populations across large parts of Europe underwent a period of demographic decline
1,2 . However, the cause of this so-called Neolithic decline is still debated. Some argue for an agricultural crisis resulting in the decline3 , others for the spread of an early form of plague4 . Here we use population-scale ancient genomics to infer ancestry, social structure and pathogen infection in 108 Scandinavian Neolithic individuals from eight megalithic graves and a stone cist. We find that the Neolithic plague was widespread, detected in at least 17% of the sampled population and across large geographical distances. We demonstrate that the disease spread within the Neolithic community in three distinct infection events within a period of around 120 years. Variant graph-based pan-genomics shows that the Neolithic plague genomes retained ancestral genomic variation present in Yersinia pseudotuberculosis, including virulence factors associated with disease outcomes. In addition, we reconstruct four multigeneration pedigrees, the largest of which consists of 38 individuals spanning six generations, showing a patrilineal social organization. Lastly, we document direct genomic evidence for Neolithic female exogamy in a woman buried in a different megalithic tomb than her brothers. Taken together, our findings provide a detailed reconstruction of plague spread within a large patrilineal kinship group and identify multiple plague infections in a population dated to the beginning of the Neolithic decline., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
4. Widespread horse-based mobility arose around 2200 BCE in Eurasia.
- Author
-
Librado P, Tressières G, Chauvey L, Fages A, Khan N, Schiavinato S, Calvière-Tonasso L, Kusliy MA, Gaunitz C, Liu X, Wagner S, Der Sarkissian C, Seguin-Orlando A, Perdereau A, Aury JM, Southon J, Shapiro B, Bouchez O, Donnadieu C, Collin YRH, Gregersen KM, Jessen MD, Christensen K, Claudi-Hansen L, Pruvost M, Pucher E, Vulic H, Novak M, Rimpf A, Turk P, Reiter S, Brem G, Schwall C, Barrey É, Robert C, Degueurce C, Horwitz LK, Klassen L, Rasmussen U, Kveiborg J, Johannsen NN, Makowiecki D, Makarowicz P, Szeliga M, Ilchyshyn V, Rud V, Romaniszyn J, Mullin VE, Verdugo M, Bradley DG, Cardoso JL, Valente MJ, Telles Antunes M, Ameen C, Thomas R, Ludwig A, Marzullo M, Prato O, Bagnasco Gianni G, Tecchiati U, Granado J, Schlumbaum A, Deschler-Erb S, Mráz MS, Boulbes N, Gardeisen A, Mayer C, Döhle HJ, Vicze M, Kosintsev PA, Kyselý R, Peške L, O'Connor T, Ananyevskaya E, Shevnina I, Logvin A, Kovalev AA, Iderkhangai TO, Sablin MV, Dashkovskiy PK, Graphodatsky AS, Merts I, Merts V, Kasparov AK, Pitulko VV, Onar V, Öztan A, Arbuckle BS, McColl H, Renaud G, Khaskhanov R, Demidenko S, Kadieva A, Atabiev B, Sundqvist M, Lindgren G, López-Cachero FJ, Albizuri S, Trbojević Vukičević T, Rapan Papeša A, Burić M, Rajić Šikanjić P, Weinstock J, Asensio Vilaró D, Codina F, García Dalmau C, Morer de Llorens J, Pou J, de Prado G, Sanmartí J, Kallala N, Torres JR, Maraoui-Telmini B, Belarte Franco MC, Valenzuela-Lamas S, Zazzo A, Lepetz S, Duchesne S, Alexeev A, Bayarsaikhan J, Houle JL, Bayarkhuu N, Turbat T, Crubézy É, Shingiray I, Mashkour M, Berezina NY, Korobov DS, Belinskiy A, Kalmykov A, Demoule JP, Reinhold S, Hansen S, Wallner B, Roslyakova N, Kuznetsov PF, Tishkin AA, Wincker P, Kanne K, Outram A, and Orlando L
- Subjects
- Animals, Female, Male, Asia, Europe, Genome genetics, History, Ancient, Reproduction, Phylogeny, Animal Husbandry history, Domestication, Horses classification, Horses genetics, Transportation history, Transportation methods
- Abstract
Horses revolutionized human history with fast mobility
1 . However, the timeline between their domestication and their widespread integration as a means of transport remains contentious2-4 . Here we assemble a collection of 475 ancient horse genomes to assess the period when these animals were first reshaped by human agency in Eurasia. We find that reproductive control of the modern domestic lineage emerged around 2200 BCE, through close-kin mating and shortened generation times. Reproductive control emerged following a severe domestication bottleneck starting no earlier than approximately 2700 BCE, and coincided with a sudden expansion across Eurasia that ultimately resulted in the replacement of nearly every local horse lineage. This expansion marked the rise of widespread horse-based mobility in human history, which refutes the commonly held narrative of large horse herds accompanying the massive migration of steppe peoples across Europe around 3000 BCE and earlier3,5 . Finally, we detect significantly shortened generation times at Botai around 3500 BCE, a settlement from central Asia associated with corrals and a subsistence economy centred on horses6,7 . This supports local horse husbandry before the rise of modern domestic bloodlines., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
5. Publisher Correction: Population genomics of post-glacial western Eurasia.
- Author
-
Allentoft ME, Sikora M, Refoyo-Martínez A, Irving-Pease EK, Fischer A, Barrie W, Ingason A, Stenderup J, Sjögren KG, Pearson A, Sousa da Mota B, Schulz Paulsson B, Halgren A, Macleod R, Jørkov MLS, Demeter F, Sørensen L, Nielsen PO, Henriksen RA, Vimala T, McColl H, Margaryan A, Ilardo M, Vaughn A, Fischer Mortensen M, Nielsen AB, Ulfeldt Hede M, Johannsen NN, Rasmussen P, Vinner L, Renaud G, Stern A, Jensen TZT, Scorrano G, Schroeder H, Lysdahl P, Ramsøe AD, Skorobogatov A, Schork AJ, Rosengren A, Ruter A, Outram A, Timoshenko AA, Buzhilova A, Coppa A, Zubova A, Silva AM, Hansen AJ, Gromov A, Logvin A, Gotfredsen AB, Henning Nielsen B, González-Rabanal B, Lalueza-Fox C, McKenzie CJ, Gaunitz C, Blasco C, Liesau C, Martinez-Labarga C, Pozdnyakov DV, Cuenca-Solana D, Lordkipanidze DO, En'shin D, Salazar-García DC, Price TD, Borić D, Kostyleva E, Veselovskaya EV, Usmanova ER, Cappellini E, Brinch Petersen E, Kannegaard E, Radina F, Eylem Yediay F, Duday H, Gutiérrez-Zugasti I, Merts I, Potekhina I, Shevnina I, Altinkaya I, Guilaine J, Hansen J, Aura Tortosa JE, Zilhão J, Vega J, Buck Pedersen K, Tunia K, Zhao L, Mylnikova LN, Larsson L, Metz L, Yepiskoposyan L, Pedersen L, Sarti L, Orlando L, Slimak L, Klassen L, Blank M, González-Morales M, Silvestrini M, Vretemark M, Nesterova MS, Rykun M, Rolfo MF, Szmyt M, Przybyła M, Calattini M, Sablin M, Dobisíková M, Meldgaard M, Johansen M, Berezina N, Card N, Saveliev NA, Poshekhonova O, Rickards O, Lozovskaya OV, Gábor O, Uldum OC, Aurino P, Kosintsev P, Courtaud P, Ríos P, Mortensen P, Lotz P, Persson P, Bangsgaard P, de Barros Damgaard P, Vang Petersen P, Martinez PP, Włodarczak P, Smolyaninov RV, Maring R, Menduiña R, Badalyan R, Iversen R, Turin R, Vasilyev S, Wåhlin S, Borutskaya S, Skochina S, Sørensen SA, Andersen SH, Jørgensen T, Serikov YB, Molodin VI, Smrcka V, Merts V, Appadurai V, Moiseyev V, Magnusson Y, Kjær KH, Lynnerup N, Lawson DJ, Sudmant PH, Rasmussen S, Korneliussen TS, Durbin R, Nielsen R, Delaneau O, Werge T, Racimo F, Kristiansen K, and Willerslev E
- Published
- 2024
- Full Text
- View/download PDF
6. Population genomics of post-glacial western Eurasia.
- Author
-
Allentoft ME, Sikora M, Refoyo-Martínez A, Irving-Pease EK, Fischer A, Barrie W, Ingason A, Stenderup J, Sjögren KG, Pearson A, Sousa da Mota B, Schulz Paulsson B, Halgren A, Macleod R, Jørkov MLS, Demeter F, Sørensen L, Nielsen PO, Henriksen RA, Vimala T, McColl H, Margaryan A, Ilardo M, Vaughn A, Fischer Mortensen M, Nielsen AB, Ulfeldt Hede M, Johannsen NN, Rasmussen P, Vinner L, Renaud G, Stern A, Jensen TZT, Scorrano G, Schroeder H, Lysdahl P, Ramsøe AD, Skorobogatov A, Schork AJ, Rosengren A, Ruter A, Outram A, Timoshenko AA, Buzhilova A, Coppa A, Zubova A, Silva AM, Hansen AJ, Gromov A, Logvin A, Gotfredsen AB, Henning Nielsen B, González-Rabanal B, Lalueza-Fox C, McKenzie CJ, Gaunitz C, Blasco C, Liesau C, Martinez-Labarga C, Pozdnyakov DV, Cuenca-Solana D, Lordkipanidze DO, En'shin D, Salazar-García DC, Price TD, Borić D, Kostyleva E, Veselovskaya EV, Usmanova ER, Cappellini E, Brinch Petersen E, Kannegaard E, Radina F, Eylem Yediay F, Duday H, Gutiérrez-Zugasti I, Merts I, Potekhina I, Shevnina I, Altinkaya I, Guilaine J, Hansen J, Aura Tortosa JE, Zilhão J, Vega J, Buck Pedersen K, Tunia K, Zhao L, Mylnikova LN, Larsson L, Metz L, Yepiskoposyan L, Pedersen L, Sarti L, Orlando L, Slimak L, Klassen L, Blank M, González-Morales M, Silvestrini M, Vretemark M, Nesterova MS, Rykun M, Rolfo MF, Szmyt M, Przybyła M, Calattini M, Sablin M, Dobisíková M, Meldgaard M, Johansen M, Berezina N, Card N, Saveliev NA, Poshekhonova O, Rickards O, Lozovskaya OV, Gábor O, Uldum OC, Aurino P, Kosintsev P, Courtaud P, Ríos P, Mortensen P, Lotz P, Persson P, Bangsgaard P, de Barros Damgaard P, Vang Petersen P, Martinez PP, Włodarczak P, Smolyaninov RV, Maring R, Menduiña R, Badalyan R, Iversen R, Turin R, Vasilyev S, Wåhlin S, Borutskaya S, Skochina S, Sørensen SA, Andersen SH, Jørgensen T, Serikov YB, Molodin VI, Smrcka V, Merts V, Appadurai V, Moiseyev V, Magnusson Y, Kjær KH, Lynnerup N, Lawson DJ, Sudmant PH, Rasmussen S, Korneliussen TS, Durbin R, Nielsen R, Delaneau O, Werge T, Racimo F, Kristiansen K, and Willerslev E
- Subjects
- Humans, Agriculture history, Asia, Western, Black Sea, Diploidy, Europe ethnology, Genotype, History, Ancient, Hunting history, Ice Cover, Genetics, Population, Genome, Human, Human Migration history, Metagenomics
- Abstract
Western Eurasia witnessed several large-scale human migrations during the Holocene
1-5 . Here, to investigate the cross-continental effects of these migrations, we shotgun-sequenced 317 genomes-mainly from the Mesolithic and Neolithic periods-from across northern and western Eurasia. These were imputed alongside published data to obtain diploid genotypes from more than 1,600 ancient humans. Our analyses revealed a 'great divide' genomic boundary extending from the Black Sea to the Baltic. Mesolithic hunter-gatherers were highly genetically differentiated east and west of this zone, and the effect of the neolithization was equally disparate. Large-scale ancestry shifts occurred in the west as farming was introduced, including near-total replacement of hunter-gatherers in many areas, whereas no substantial ancestry shifts happened east of the zone during the same period. Similarly, relatedness decreased in the west from the Neolithic transition onwards, whereas, east of the Urals, relatedness remained high until around 4,000 BP, consistent with the persistence of localized groups of hunter-gatherers. The boundary dissolved when Yamnaya-related ancestry spread across western Eurasia around 5,000 BP, resulting in a second major turnover that reached most parts of Europe within a 1,000-year span. The genetic origin and fate of the Yamnaya have remained elusive, but we show that hunter-gatherers from the Middle Don region contributed ancestry to them. Yamnaya groups later admixed with individuals associated with the Globular Amphora culture before expanding into Europe. Similar turnovers occurred in western Siberia, where we report new genomic data from a 'Neolithic steppe' cline spanning the Siberian forest steppe to Lake Baikal. These prehistoric migrations had profound and lasting effects on the genetic diversity of Eurasian populations., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
7. Elevated genetic risk for multiple sclerosis emerged in steppe pastoralist populations.
- Author
-
Barrie W, Yang Y, Irving-Pease EK, Attfield KE, Scorrano G, Jensen LT, Armen AP, Dimopoulos EA, Stern A, Refoyo-Martinez A, Pearson A, Ramsøe A, Gaunitz C, Demeter F, Jørkov MLS, Møller SB, Springborg B, Klassen L, Hyldgård IM, Wickmann N, Vinner L, Korneliussen TS, Allentoft ME, Sikora M, Kristiansen K, Rodriguez S, Nielsen R, Iversen AKN, Lawson DJ, Fugger L, and Willerslev E
- Subjects
- Humans, Datasets as Topic, Diet ethnology, Diet history, Europe ethnology, Genetics, Medical, History, 15th Century, History, Ancient, History, Medieval, Human Migration history, Life Style ethnology, Life Style history, Neurodegenerative Diseases genetics, Neurodegenerative Diseases history, Neurodegenerative Diseases immunology, Population Density, Genetic Predisposition to Disease history, Genome, Human, Grassland, Multiple Sclerosis genetics, Multiple Sclerosis history, Multiple Sclerosis immunology
- Abstract
Multiple sclerosis (MS) is a neuro-inflammatory and neurodegenerative disease that is most prevalent in Northern Europe. Although it is known that inherited risk for MS is located within or in close proximity to immune-related genes, it is unknown when, where and how this genetic risk originated
1 . Here, by using a large ancient genome dataset from the Mesolithic period to the Bronze Age2 , along with new Medieval and post-Medieval genomes, we show that the genetic risk for MS rose among pastoralists from the Pontic steppe and was brought into Europe by the Yamnaya-related migration approximately 5,000 years ago. We further show that these MS-associated immunogenetic variants underwent positive selection both within the steppe population and later in Europe, probably driven by pathogenic challenges coinciding with changes in diet, lifestyle and population density. This study highlights the critical importance of the Neolithic period and Bronze Age as determinants of modern immune responses and their subsequent effect on the risk of developing MS in a changing environment., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF
8. A Middle Pleistocene Denisovan molar from the Annamite Chain of northern Laos.
- Author
-
Demeter F, Zanolli C, Westaway KE, Joannes-Boyau R, Duringer P, Morley MW, Welker F, Rüther PL, Skinner MM, McColl H, Gaunitz C, Vinner L, Dunn TE, Olsen JV, Sikora M, Ponche JL, Suzzoni E, Frangeul S, Boesch Q, Antoine PO, Pan L, Xing S, Zhao JX, Bailey RM, Boualaphane S, Sichanthongtip P, Sihanam D, Patole-Edoumba E, Aubaile F, Crozier F, Bourgon N, Zachwieja A, Luangkhoth T, Souksavatdy V, Sayavongkhamdy T, Cappellini E, Bacon AM, Hublin JJ, Willerslev E, and Shackelford L
- Subjects
- Animals, Bayes Theorem, Female, Fossils, Humans, Laos, Molar, Hominidae anatomy & histology
- Abstract
The Pleistocene presence of the genus Homo in continental Southeast Asia is primarily evidenced by a sparse stone tool record and rare human remains. Here we report a Middle Pleistocene hominin specimen from Laos, with the discovery of a molar from the Tam Ngu Hao 2 (Cobra Cave) limestone cave in the Annamite Mountains. The age of the fossil-bearing breccia ranges between 164-131 kyr, based on the Bayesian modelling of luminescence dating of the sedimentary matrix from which it was recovered, U-series dating of an overlying flowstone, and U-series-ESR dating of associated faunal teeth. Analyses of the internal structure of the molar in tandem with palaeoproteomic analyses of the enamel indicate that the tooth derives from a young, likely female, Homo individual. The close morphological affinities with the Xiahe specimen from China indicate that they belong to the same taxon and that Tam Ngu Hao 2 most likely represents a Denisovan., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
9. The origins and spread of domestic horses from the Western Eurasian steppes.
- Author
-
Librado P, Khan N, Fages A, Kusliy MA, Suchan T, Tonasso-Calvière L, Schiavinato S, Alioglu D, Fromentier A, Perdereau A, Aury JM, Gaunitz C, Chauvey L, Seguin-Orlando A, Der Sarkissian C, Southon J, Shapiro B, Tishkin AA, Kovalev AA, Alquraishi S, Alfarhan AH, Al-Rasheid KAS, Seregély T, Klassen L, Iversen R, Bignon-Lau O, Bodu P, Olive M, Castel JC, Boudadi-Maligne M, Alvarez N, Germonpré M, Moskal-Del Hoyo M, Wilczyński J, Pospuła S, Lasota-Kuś A, Tunia K, Nowak M, Rannamäe E, Saarma U, Boeskorov G, Lōugas L, Kyselý R, Peške L, Bălășescu A, Dumitrașcu V, Dobrescu R, Gerber D, Kiss V, Szécsényi-Nagy A, Mende BG, Gallina Z, Somogyi K, Kulcsár G, Gál E, Bendrey R, Allentoft ME, Sirbu G, Dergachev V, Shephard H, Tomadini N, Grouard S, Kasparov A, Basilyan AE, Anisimov MA, Nikolskiy PA, Pavlova EY, Pitulko V, Brem G, Wallner B, Schwall C, Keller M, Kitagawa K, Bessudnov AN, Bessudnov A, Taylor W, Magail J, Gantulga JO, Bayarsaikhan J, Erdenebaatar D, Tabaldiev K, Mijiddorj E, Boldgiv B, Tsagaan T, Pruvost M, Olsen S, Makarewicz CA, Valenzuela Lamas S, Albizuri Canadell S, Nieto Espinet A, Iborra MP, Lira Garrido J, Rodríguez González E, Celestino S, Olària C, Arsuaga JL, Kotova N, Pryor A, Crabtree P, Zhumatayev R, Toleubaev A, Morgunova NL, Kuznetsova T, Lordkipanize D, Marzullo M, Prato O, Bagnasco Gianni G, Tecchiati U, Clavel B, Lepetz S, Davoudi H, Mashkour M, Berezina NY, Stockhammer PW, Krause J, Haak W, Morales-Muñiz A, Benecke N, Hofreiter M, Ludwig A, Graphodatsky AS, Peters J, Kiryushin KY, Iderkhangai TO, Bokovenko NA, Vasiliev SK, Seregin NN, Chugunov KV, Plasteeva NA, Baryshnikov GF, Petrova E, Sablin M, Ananyevskaya E, Logvin A, Shevnina I, Logvin V, Kalieva S, Loman V, Kukushkin I, Merz I, Merz V, Sakenov S, Varfolomeyev V, Usmanova E, Zaibert V, Arbuckle B, Belinskiy AB, Kalmykov A, Reinhold S, Hansen S, Yudin AI, Vybornov AA, Epimakhov A, Berezina NS, Roslyakova N, Kosintsev PA, Kuznetsov PF, Anthony D, Kroonen GJ, Kristiansen K, Wincker P, Outram A, and Orlando L
- Subjects
- Animals, Archaeology, Asia, DNA, Ancient, Europe, Genome, Grassland, Phylogeny, Domestication, Genetics, Population, Horses genetics
- Abstract
Domestication of horses fundamentally transformed long-range mobility and warfare
1 . However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2-4 at Botai, Central Asia around 3500 BC3 . Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6 , have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 BC, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 BC8,9 driving the spread of Indo-European languages10 . This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium BC Sintashta culture11,12 ., (© 2021. The Author(s).)- Published
- 2021
- Full Text
- View/download PDF
10. Tracking Five Millennia of Horse Management with Extensive Ancient Genome Time Series.
- Author
-
Fages A, Hanghøj K, Khan N, Gaunitz C, Seguin-Orlando A, Leonardi M, McCrory Constantz C, Gamba C, Al-Rasheid KAS, Albizuri S, Alfarhan AH, Allentoft M, Alquraishi S, Anthony D, Baimukhanov N, Barrett JH, Bayarsaikhan J, Benecke N, Bernáldez-Sánchez E, Berrocal-Rangel L, Biglari F, Boessenkool S, Boldgiv B, Brem G, Brown D, Burger J, Crubézy E, Daugnora L, Davoudi H, de Barros Damgaard P, de Los Ángeles de Chorro Y de Villa-Ceballos M, Deschler-Erb S, Detry C, Dill N, do Mar Oom M, Dohr A, Ellingvåg S, Erdenebaatar D, Fathi H, Felkel S, Fernández-Rodríguez C, García-Viñas E, Germonpré M, Granado JD, Hallsson JH, Hemmer H, Hofreiter M, Kasparov A, Khasanov M, Khazaeli R, Kosintsev P, Kristiansen K, Kubatbek T, Kuderna L, Kuznetsov P, Laleh H, Leonard JA, Lhuillier J, Liesau von Lettow-Vorbeck C, Logvin A, Lõugas L, Ludwig A, Luis C, Arruda AM, Marques-Bonet T, Matoso Silva R, Merz V, Mijiddorj E, Miller BK, Monchalov O, Mohaseb FA, Morales A, Nieto-Espinet A, Nistelberger H, Onar V, Pálsdóttir AH, Pitulko V, Pitskhelauri K, Pruvost M, Rajic Sikanjic P, Rapan Papeša A, Roslyakova N, Sardari A, Sauer E, Schafberg R, Scheu A, Schibler J, Schlumbaum A, Serrand N, Serres-Armero A, Shapiro B, Sheikhi Seno S, Shevnina I, Shidrang S, Southon J, Star B, Sykes N, Taheri K, Taylor W, Teegen WR, Trbojević Vukičević T, Trixl S, Tumen D, Undrakhbold S, Usmanova E, Vahdati A, Valenzuela-Lamas S, Viegas C, Wallner B, Weinstock J, Zaibert V, Clavel B, Lepetz S, Mashkour M, Helgason A, Stefánsson K, Barrey E, Willerslev E, Outram AK, Librado P, and Orlando L
- Subjects
- Animals, Asia, Biological Evolution, Breeding history, DNA, Ancient analysis, Domestication, Equidae genetics, Europe, Female, Genetic Variation genetics, Genome genetics, History, Ancient, Male, Phylogeny, Horses genetics
- Abstract
Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (≥1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modern legacy of past equestrian civilizations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN "speed gene," only rose in popularity within the last millennium. Finally, the development of modern breeding impacted genetic diversity more dramatically than the previous millennia of human management., (Copyright © 2019 The Author(s). Published by Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
11. Ancient genomes revisit the ancestry of domestic and Przewalski's horses.
- Author
-
Gaunitz C, Fages A, Hanghøj K, Albrechtsen A, Khan N, Schubert M, Seguin-Orlando A, Owens IJ, Felkel S, Bignon-Lau O, de Barros Damgaard P, Mittnik A, Mohaseb AF, Davoudi H, Alquraishi S, Alfarhan AH, Al-Rasheid KAS, Crubézy E, Benecke N, Olsen S, Brown D, Anthony D, Massy K, Pitulko V, Kasparov A, Brem G, Hofreiter M, Mukhtarova G, Baimukhanov N, Lõugas L, Onar V, Stockhammer PW, Krause J, Boldgiv B, Undrakhbold S, Erdenebaatar D, Lepetz S, Mashkour M, Ludwig A, Wallner B, Merz V, Merz I, Zaibert V, Willerslev E, Librado P, Outram AK, and Orlando L
- Subjects
- Animals, DNA, Ancient, Genome, Horses anatomy & histology, Phenotype, Phylogeny, Horses classification, Horses genetics
- Abstract
The Eneolithic Botai culture of the Central Asian steppes provides the earliest archaeological evidence for horse husbandry, ~5500 years ago, but the exact nature of early horse domestication remains controversial. We generated 42 ancient-horse genomes, including 20 from Botai. Compared to 46 published ancient- and modern-horse genomes, our data indicate that Przewalski's horses are the feral descendants of horses herded at Botai and not truly wild horses. All domestic horses dated from ~4000 years ago to present only show ~2.7% of Botai-related ancestry. This indicates that a massive genomic turnover underpins the expansion of the horse stock that gave rise to modern domesticates, which coincides with large-scale human population expansions during the Early Bronze Age., (Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Published
- 2018
- Full Text
- View/download PDF
12. Experimental conditions improving in-solution target enrichment for ancient DNA.
- Author
-
Cruz-Dávalos DI, Llamas B, Gaunitz C, Fages A, Gamba C, Soubrier J, Librado P, Seguin-Orlando A, Pruvost M, Alfarhan AH, Alquraishi SA, Al-Rasheid KAS, Scheu A, Beneke N, Ludwig A, Cooper A, Willerslev E, and Orlando L
- Subjects
- Base Composition, CpG Islands, DNA Probes, High-Throughput Nucleotide Sequencing, Nucleic Acid Hybridization, DNA, Ancient analysis, Sequence Analysis, DNA methods
- Abstract
High-throughput sequencing has dramatically fostered ancient DNA research in recent years. Shotgun sequencing, however, does not necessarily appear as the best-suited approach due to the extensive contamination of samples with exogenous environmental microbial DNA. DNA capture-enrichment methods represent cost-effective alternatives that increase the sequencing focus on the endogenous fraction, whether it is from mitochondrial or nuclear genomes, or parts thereof. Here, we explored experimental parameters that could impact the efficacy of MYbaits in-solution capture assays of ~5000 nuclear loci or the whole genome. We found that varying quantities of the starting probes had only moderate effect on capture outcomes. Starting DNA, probe tiling, the hybridization temperature and the proportion of endogenous DNA all affected the assay, however. Additionally, probe features such as their GC content, number of CpG dinucleotides, sequence complexity and entropy and self-annealing properties need to be carefully addressed during the design stage of the capture assay. The experimental conditions and probe molecular features identified in this study will improve the recovery of genetic information extracted from degraded and ancient remains., (© 2016 John Wiley & Sons Ltd.)
- Published
- 2017
- Full Text
- View/download PDF
13. Ancient genomic changes associated with domestication of the horse.
- Author
-
Librado P, Gamba C, Gaunitz C, Der Sarkissian C, Pruvost M, Albrechtsen A, Fages A, Khan N, Schubert M, Jagannathan V, Serres-Armero A, Kuderna LFK, Povolotskaya IS, Seguin-Orlando A, Lepetz S, Neuditschko M, Thèves C, Alquraishi S, Alfarhan AH, Al-Rasheid K, Rieder S, Samashev Z, Francfort HP, Benecke N, Hofreiter M, Ludwig A, Keyser C, Marques-Bonet T, Ludes B, Crubézy E, Leeb T, Willerslev E, and Orlando L
- Subjects
- Animals, DNA, Ancient, DNA, Mitochondrial genetics, Genetic Variation, Genome, Neural Crest, Quantitative Trait, Heritable, Selection, Genetic, Breeding, Domestication, Horses genetics
- Abstract
The genomic changes underlying both early and late stages of horse domestication remain largely unknown. We examined the genomes of 14 early domestic horses from the Bronze and Iron Ages, dating to between ~4.1 and 2.3 thousand years before present. We find early domestication selection patterns supporting the neural crest hypothesis, which provides a unified developmental origin for common domestic traits. Within the past 2.3 thousand years, horses lost genetic diversity and archaic DNA tracts introgressed from a now-extinct lineage. They accumulated deleterious mutations later than expected under the cost-of-domestication hypothesis, probably because of breeding from limited numbers of stallions. We also reveal that Iron Age Scythian steppe nomads implemented breeding strategies involving no detectable inbreeding and selection for coat-color variation and robust forelimbs., (Copyright © 2017, American Association for the Advancement of Science.)
- Published
- 2017
- Full Text
- View/download PDF
14. The Evolutionary Origin and Genetic Makeup of Domestic Horses.
- Author
-
Librado P, Fages A, Gaunitz C, Leonardi M, Wagner S, Khan N, Hanghøj K, Alquraishi SA, Alfarhan AH, Al-Rasheid KA, Der Sarkissian C, Schubert M, and Orlando L
- Subjects
- Animals, Cattle, Dogs, Humans, Animals, Domestic genetics, Biological Evolution, Horses genetics, Selective Breeding genetics
- Abstract
The horse was domesticated only 5.5 KYA, thousands of years after dogs, cattle, pigs, sheep, and goats. The horse nonetheless represents the domestic animal that most impacted human history; providing us with rapid transportation, which has considerably changed the speed and magnitude of the circulation of goods and people, as well as their cultures and diseases. By revolutionizing warfare and agriculture, horses also deeply influenced the politico-economic trajectory of human societies. Reciprocally, human activities have circled back on the recent evolution of the horse, by creating hundreds of domestic breeds through selective programs, while leading all wild populations to near extinction. Despite being tightly associated with humans, several aspects in the evolution of the domestic horse remain controversial. Here, we review recent advances in comparative genomics and paleogenomics that helped advance our understanding of the genetic foundation of domestic horses., (Copyright © 2016 by the Genetics Society of America.)
- Published
- 2016
- Full Text
- View/download PDF
15. Comparing the performance of three ancient DNA extraction methods for high-throughput sequencing.
- Author
-
Gamba C, Hanghøj K, Gaunitz C, Alfarhan AH, Alquraishi SA, Al-Rasheid KA, Bradley DG, and Orlando L
- Subjects
- Alaska, Bone and Bones, South America, DNA isolation & purification, Fossils, High-Throughput Nucleotide Sequencing methods, Molecular Biology methods
- Abstract
The DNA molecules that can be extracted from archaeological and palaeontological remains are often degraded and massively contaminated with environmental microbial material. This reduces the efficacy of shotgun approaches for sequencing ancient genomes, despite the decreasing sequencing costs of high-throughput sequencing (HTS). Improving the recovery of endogenous molecules from the DNA extraction and purification steps could, thus, help advance the characterization of ancient genomes. Here, we apply the three most commonly used DNA extraction methods to five ancient bone samples spanning a ~30 thousand year temporal range and originating from a diversity of environments, from South America to Alaska. We show that methods based on the purification of DNA fragments using silica columns are more advantageous than in solution methods and increase not only the total amount of DNA molecules retrieved but also the relative importance of endogenous DNA fragments and their molecular diversity. Therefore, these methods provide a cost-effective solution for downstream applications, including DNA sequencing on HTS platforms., (© 2015 John Wiley & Sons Ltd.)
- Published
- 2016
- Full Text
- View/download PDF
16. Enamel thickness trends in Plio-Pleistocene hominin mandibular molars.
- Author
-
Skinner MM, Alemseged Z, Gaunitz C, and Hublin JJ
- Subjects
- Animals, Dental Enamel diagnostic imaging, Fossils, Hominidae, Mandible anatomy & histology, Molar diagnostic imaging, Paleodontology, X-Ray Microtomography, Dental Enamel anatomy & histology, Molar anatomy & histology
- Abstract
Enamel thickness continues to be an important morphological character in hominin systematics and is frequently invoked in dietary reconstructions of Plio-Pleistocene hominin taxa. However, to date, the majority of published data on molar enamel thickness of Pliocene and early Pleistocene hominins derive from naturally fractured random surfaces of a small number of specimens. In this study we systematically analyze enamel thickness in a large sample of Plio-Pleistocene fossil hominins (n = 99), extant hominoids (n = 57), and modern humans (n = 30). Based on analysis of 2D mesial planes of section derived from microtomography, we examine both average and relative enamel thickness, and the distribution of enamel across buccal, occlusal, and lingual components of mandibular molars. Our results confirm the trend of increasing enamel thickness during the Pliocene that culminates in the thick enamel of the robust Australopithecus species, and then decreases from early Homo to recent modern humans. All hominin taxa share a regional average enamel thickness pattern of thick occlusal enamel and greater buccal than lingual enamel thickness. Pan is unique in exhibiting the thinnest average enamel thickness in the occlusal basin. Statistical analysis indicates that among Pliocene hominins enamel thickness is a weak taxonomic discriminator. The data underlying these results are included in a table in the Supplementary Online Material., (Copyright © 2015 Elsevier Ltd. All rights reserved.)
- Published
- 2015
- Full Text
- View/download PDF
17. Suitability of antigens PGP 9.5 and neurofilament light as marker proteins for detection of neuronal tissue in processed meat products.
- Author
-
Gaunitz C, Gabert J, Lücker E, Seeger J, and Stahl T
- Subjects
- Animals, Antibodies, Monoclonal immunology, Blotting, Western, Cattle, Chickens, Cross Reactions, Enzyme-Linked Immunosorbent Assay, Prion Diseases prevention & control, Prion Diseases transmission, Reproducibility of Results, Sensitivity and Specificity, Species Specificity, Swine, Food Contamination analysis, Meat Products analysis, Neurofilament Proteins analysis, Ubiquitin Thiolesterase analysis
- Abstract
The enforcement of rules for food labeling and quantitative ingredient declaration presupposes appropriate test systems. Additionally, central nervous system (CNS) tissue of ruminants is classified as specified risk material for the transmission of prion diseases, and its detection is needed to support the specified risk material ban. Existing antibody-based test systems are hampered by relatively high limits of detection and susceptibility to food processing conditions. For that reason we tested a broad panel of commercially available monoclonal antibodies to identify marker antigens appropriate for the development of a sensitive test system. Western blot analysis using organ-specific samples from cow, pig, and chicken and differently processed meat products containing defined amounts of CNS tissue revealed neurofilament light (NF-L) and protein gene product 9.5 (PGP 9.5) as suitable antigens for the organ-specific and sensitive detection of porcine and bovine CNS tissue. None of the tested PGP 9.5 antibodies displayed cross-reactivity to chicken tissues. Both antigens could be detected in moderately (F(10)121.1 = 0.84) and strongly (F(10)121.1 = 4.01) heated processed meat products containing 5% (NF-L) or 0.2% (PGP 9.5) CNS tissue, respectively. Further, two monoclonal antibodies (clones 13C4 and 31A3) directed against PGP 9.5 were used for the development of a sandwich enzyme-linked immunosorbent assay. The limits of detection of the enzyme-linked immunosorbent assay were approximately 2% added CNS tissue in fresh processed meat products and approximately 0.5% for strongly heated processed meat products (F(10)121.1 = 4.01). In conclusion this test system constitutes a valuable supplementation to existing procedures, which could improve enforcement of food safety regulations.
- Published
- 2009
- Full Text
- View/download PDF
18. Cis-regulatory sequences from the first intron of the rat glutamine synthetase gene are involved in hepatocyte specific expression of the enzyme.
- Author
-
Gaunitz F, Gaunitz C, Papke M, and Gebhardt R
- Subjects
- Animals, Base Sequence, Cattle, Cells, Cultured, Enhancer Elements, Genetic, Gene Expression, Humans, Liver cytology, Male, Molecular Sequence Data, Rats, Rats, Sprague-Dawley, Sequence Analysis, DNA, Transfection, Tumor Cells, Cultured, Glutamate-Ammonia Ligase genetics, Introns, Liver enzymology, Regulatory Sequences, Nucleic Acid
- Abstract
In order to identify regulatory elements involved in the hepatocyte specific expression of the enzyme glutamine synthetase [GS (E.C. 6.3.1.2)] we analyzed the first intron of the rat GS gene. A sequence analysis detected clusters of potential transcription factor binding sites in regions that are hypersensitive for DNase I, including sites for Sp1, HNF3 and elements related to binding of members from the C/EBP family. By use of DNA fragments with putative regulatory elements, reporter genes have been constructed that were transfected into isolated hepatocytes in primary culture and into HepG2 hepatoblastoma cells. By these experiments we cold show that sequences from the first intron are able to enhance transcription specifically in hepatocytes but not in cells from the hepatoblastoma cell line. The existence of enhancer effects in the first intron of the GS gene and their restriction to hepatocytes demonstrates that aside from regulatory regions upstream of the transcription start point, there are also downstream regions involved in the specific expression of the gene. We conclude that intronic elements are involved in the pretranslational regulation of the expression of the GS as part of a complex interplay between different regions of the gene.
- Published
- 1997
- Full Text
- View/download PDF
19. Identification and functional characterization of regulatory elements of the glutamine synthetase gene from rat liver.
- Author
-
Fahrner J, Labruyere WT, Gaunitz C, Moorman AF, Gebhardt R, and Lamers WH
- Subjects
- Animals, Base Sequence, Enhancer Elements, Genetic, Introns, Molecular Sequence Data, Promoter Regions, Genetic, Rats, Sequence Analysis, DNA, Gene Expression Regulation, Enzymologic, Genes, Regulator, Glutamate-Ammonia Ligase genetics, Liver enzymology
- Abstract
Hepatic glutamine synthetase (GS) shows a unique expression pattern limited to a few hepatocytes surrounding the terminal hepatic veins. Starting from the genomic clone of the rat GS gene, lambda GS1 [Van de Zande, L. P. G. W., Labruyère, W. T., Arnberg, A. C., Wilson, R. H., Van den Bogaert, A. J. W., Das, A. T., Frijters, C., Charles, R., Moorman, A. F. M. & Lamers, W. H. (1990) Gene (Amst.) 87, 225-232] additional genomic clones containing up to 9 kb of 5'flanking region were isolated in order to characterize cis-acting elements involved in the regulation of GS expression. Sequence analysis of the 5'flanking region up to -2520 bp revealed a putative AP2-binding site at -223 bp and a second GC box at -2343 bp in addition to the canonical TATA, CCAAT and GC boxes found proximal to the transcription-start site. A possible negative glucocorticoid-responsive element (GRE) and regions with very weak similarity to a GRE and to a known silencer element were noted at -506 bp, -406 bp and at -798 bp, respectively. Within the sequenced part of the 5'flanking region no known regulatory elements associated with liver-specific gene expression were found except for a putative HNF3-binding site at -896 bp. Functional analysis by transient transfection assays using constructs with the pSSCAT or the pXP1 vector revealed that the elements present within the first 153 bp and particularly the first 368 bp of upstream sequence constitute an active promoter the activity of which is decreased by additional sequences up to -2148 bp. The presence of dexamethasone led to a 2-4-fold increase in the promoter activity of all these constructs. Using the heterologous truncated thymidine-kinase-gene promoter of the plasmid pT81-luc a strong enhancer element was located between -2520 bp and -2148 bp. Its activity was not affected by dexamethasone but was negatively influenced by flanking sequences in both directions. This enhancer was also effective with the homologous GS promoter (-153 to +59 bp) and the heterologous full thymidine-kinase-gene promoter (pT109luc). No further enhancers were found up to -6200 bp. Using the same approach, a second enhancer was found between +259 bp and +950 bp within the first intron. Deoxyribonuclease-I hypersensitivity studies confirmed the presence of a hypersensitive site between +350 bp and +550 bp and suggested a second site between +850 bp and +1200 bp.(ABSTRACT TRUNCATED AT 400 WORDS)
- Published
- 1993
- Full Text
- View/download PDF
20. Primary structure of a gene-sized DNA encoding calmodulin from the hypotrichous ciliate Stylonychia lemnae.
- Author
-
Gaunitz C, Witte H, and Gaunitz F
- Subjects
- Amino Acid Sequence, Animals, Base Sequence, Blotting, Northern, Chickens, Cloning, Molecular, DNA, Protozoan, Enhancer Elements, Genetic, Molecular Sequence Data, Sequence Homology, Amino Acid, Transcription, Genetic, Calmodulin genetics, Genes, Protozoan, Sporadotrichina genetics
- Abstract
We have isolated and characterized a gene-sized DNA encoding calmodulin (Clm) from macronuclear (MA) DNA of the hypotrichous ciliate, Stylonychia lemnae. The gene has 3500 copies per macronucleus. The length of the gene was deduced by agarose-gel electrophoresis of MA DNA and Southern blot analysis using a Clm cDNA probe from chicken. We then isolated the gene from a MA library. The overall length of the gene is 821 bp with a 450-bp intronless coding region. The deduced amino acid (aa) sequence of ciliate Clm has 149 aa and an M(r) of 16,819. Both ends of the cloned gene have the hypotrichous telomeric C4A4 repeat. The coding region is flanked by a 158-bp 5'-leader sequence and a 3'-trailer sequence of 213 bp. S1 analysis was used to locate the transcription start point (tsp) 49 bp upstream from the start codon. No common eukaryotic transcription signals were found upstream from the tsp. A second gene-sized DNA, detected by its cross-hybridization with the Clm DNA, predicts the existence of a second Ca(2+)-binding protein with only one Ca(2+)-binding site. It's function and biological significance is yet unknown.
- Published
- 1992
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.