1. Limits and consistency of non-local and graph approximations to the Eikonal equation
- Author
-
Jalal Fadili, Nicolas Forcadel, Thi Tuyen Nguyen, Rita Zantout, Equipe Image - Laboratoire GREYC - UMR6072, Groupe de Recherche en Informatique, Image et Instrumentation de Caen (GREYC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS), Normandie Université (NU), École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU), Laboratoire de Mathématiques de l'INSA de Rouen Normandie (LMI), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU), This work was supported by the Normandy Region grant MoNomads and partly by the European Union’sHorizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 777826 (NoMADS)., European Project: 777826,NoMADS(2018), Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Normandie Université (NU)-Université de Caen Normandie (UNICAEN), and Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN)
- Subjects
Computational Mathematics ,Error bounds ,Continuum limits ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Viscosity solution ,Applied Mathematics ,General Mathematics ,MSC: 70H20, 49L25, 65N15, 58J32, 60D05, 05C90 ,Weighted graphs ,[MATH.MATH-FA]Mathematics [math]/Functional Analysis [math.FA] ,Eikonal equation ,[MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] ,Non-local - Abstract
In this paper, we study a nonlocal approximation of the time-dependent (local) Eikonal equation with Dirichlet-type boundary conditions, where the kernel in the nonlocal problem is properly scaled. Based on the theory of viscosity solutions, we prove existence and uniqueness of the viscosity solutions of both the local and nonlocal problems, as well as regularity properties of these solutions in time and space. We then derive error bounds between the solution to the nonlocal problem and that of the local one, both in continuous time and forward Euler time discretization. We then turn to studying continuum limits of nonlocal problems defined on random weighted graphs with $n$ vertices. In particular, we establish that if the kernel scale parameter decreases at an appropriate rate as $n$ grows then, almost surely, the solution of the problem on graphs converges uniformly to the viscosity solution of the local problem as the time step vanishes and the number vertices $n$ grows large.
- Published
- 2022