1. Propelling microdroplets generated and sustained by liquid-liquid phase separation in confined spaces
- Author
-
Xuehua Zhang, John M. Shaw, Detlef Lohse, Jiasheng Qian, Yibo Chen, Jae Bem You, Gilmar F. Arends, MESA+ Institute, and Physics of Fluids
- Subjects
Work (thermodynamics) ,Membranes ,Materials science ,Flow (psychology) ,UT-Hybrid-D ,02 engineering and technology ,General Chemistry ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,6. Clean water ,0104 chemical sciences ,Diffusion ,Solvent ,Confined Spaces ,Pharmaceutical Preparations ,Cascade ,Chemical physics ,Solvents ,Liquid liquid ,0210 nano-technology ,Concentration gradient ,Ternary operation ,Confined space - Abstract
Flow transport in confined spaces is ubiquitous in technological processes, ranging from separation and purification of pharmaceutical ingredients by microporous membranes and drug delivery in biomedical treatment to chemical and biomass conversion in catalyst-packed reactors and carbon dioxide sequestration. In this work, we suggest a distinct pathway for enhanced liquid transport in a confined space via propelling microdroplets. These microdroplets can form spontaneously from localized liquid-liquid phase separation as a ternary mixture is diluted by a diffusing poor solvent. High speed images reveal how the microdroplets grow, break up and propel rapidly along the solid surface, with a maximal velocity up to ∼160 μm s-1, in response to a sharp concentration gradient resulting from phase separation. The microdroplet propulsion induces a replenishing flow between the walls of the confined space towards the location of phase separation, which in turn drives the mixture out of equilibrium and leads to a repeating cascade of events. Our findings on the complex and rich phenomena of propelling droplets suggest an effective approach to enhanced flow motion of multicomponent liquid mixtures within confined spaces for time effective separation and smart transport processes. This journal is
- Published
- 2021