1. Monte-Carlo simulations of clinically realistic respiratory gated (18)F-FDG PET: application to lesion detectability and volume measurements
- Author
-
Irène Buvat, S. Vauclin, Agathe Edet-Sanson, Isabelle Gardin, Pierre Vera, Christian Michel, K. Doyeux, Sébastien Hapdey, Service de médecine nucléaire [Rouen], CRLCC Haute Normandie-CRLCC Henri Becquerel, Siemens Molecular Imaging [Knoxville], Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC (UMR_8165)), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), service de radiothérapie et de physique médicale, CRLCC Henri Becquerel, Equipe Quantification en Imagerie Fonctionnelle (QuantIF-LITIS), Laboratoire d'Informatique, de Traitement de l'Information et des Systèmes (LITIS), Université Le Havre Normandie (ULH), Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Le Havre Normandie (ULH), Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA), CRLCC Haute Normandie-Centre de Lutte Contre le Cancer Henri Becquerel Normandie Rouen (CLCC Henri Becquerel), Centre de Lutte Contre le Cancer Henri Becquerel Normandie Rouen (CLCC Henri Becquerel), Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Université Le Havre Normandie (ULH), and Normandie Université (NU)
- Subjects
Lung Neoplasms ,Image quality ,Monte Carlo method ,Health Informatics ,Monte-Carlo simulation ,Imaging phantom ,18f fdg pet ,Respiratory gating ,Imaging, Three-Dimensional ,Sampling (signal processing) ,Fluorodeoxyglucose F18 ,Carcinoma, Non-Small-Cell Lung ,Image Interpretation, Computer-Assisted ,Humans ,Medicine ,Computer Simulation ,Computer vision ,Respiratory system ,Image segmentation ,Phantoms, Imaging ,business.industry ,Radiotherapy Planning, Computer-Assisted ,Computer Science Applications ,PET ,Positron-Emission Tomography ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,Respiratory Mechanics ,Artificial intelligence ,Radiopharmaceuticals ,business ,Nuclear medicine ,Monte Carlo Method ,Algorithms ,Software ,Volume (compression) - Abstract
We create a dataset of clinically realistic Monte-Carlo respiratory PET data.We validated the realism of the simulated data.We evaluated the lesion detectability regarding their location, volume and contrast.Respiratory-gating of 18F-FDG PET images improves the accuracy of volume estimates. In PET/CT thoracic imaging, respiratory motion reduces image quality. A solution consists in performing respiratory gated PET acquisitions. The aim of this study was to generate clinically realistic Monte-Carlo respiratory PET data, obtained using the 4D-NCAT numerical phantom and the GATE simulation tool, to assess the impact of respiratory motion and respiratory-motion compensation in PET on lesion detection and volume measurement. To obtain reconstructed images as close as possible to those obtained in clinical conditions, a particular attention was paid to apply to the simulated data the same correction and reconstruction processes as those applied to real clinical data. The simulations required 140,000h (CPU) generating 1.5 To of data (98 respiratory gated and 49 ungated scans). Calibration phantom and patient reconstructed images from the simulated data were visually and quantitatively very similar to those obtained in clinical studies. The lesion detectability was higher when the better trade-off between lesion movement limitation (compared to ungated acquisitions) and image statistic preservation is considered (respiratory cycle sampling in 3 frames). We then compared the lesion volumes measured on conventional PET acquisitions versus respiratory gated acquisitions, using an automatic segmentation method and a 40%-threshold approach. A time consuming initial manual exclusion of noisy structures needed with the 40%-threshold was not necessary when the automatic method was used. The lesion detectability along with the accuracy of tumor volume estimates was largely improved with the gated compared to ungated PET images.
- Published
- 2015