245 results on '"Karsch, S"'
Search Results
2. EuPRAXIA Conceptual Design Report
- Author
-
Assmann, R. W., Weikum, M. K., Akhter, T., Alesini, D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Artioli, M., Aschikhin, A., Audet, T., Bacci, A., Barna, I. F., Bartocci, S., Bayramian, A., Beaton, A., Beck, A., Bellaveglia, M., Beluze, A., Bernhard, A., Biagioni, A., Bielawski, S., Bisesto, F. G., Bonatto, A., Boulton, L., Brandi, F., Brinkmann, R., Briquez, F., Brottier, F., Bründermann, E., Büscher, M., Buonomo, B., Bussmann, M. H., Bussolino, G., Campana, P., Cantarella, S., Cassou, K., Chancé, A., Chen, M., Chiadroni, E., Cianchi, A., Cioeta, F., Clarke, J. A., Cole, J. M., Costa, G., Couprie, M. -E., Cowley, J., Croia, M., Cros, B., Crump, P. A., D’Arcy, R., Dattoli, G., Del Dotto, A., Delerue, N., Del Franco, M., Delinikolas, P., De Nicola, S., Dias, J. M., Di Giovenale, D., Diomede, M., Di Pasquale, E., Di Pirro, G., Di Raddo, G., Dorda, U., Erlandson, A. C., Ertel, K., Esposito, A., Falcoz, F., Falone, A., Fedele, R., Ferran Pousa, A., Ferrario, M., Filippi, F., Fils, J., Fiore, G., Fiorito, R., Fonseca, R. A., Franzini, G., Galimberti, M., Gallo, A., Galvin, T. C., Ghaith, A., Ghigo, A., Giove, D., Giribono, A., Gizzi, L. A., Grüner, F. J., Habib, A. F., Haefner, C., Heinemann, T., Helm, A., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Hübner, M., Ibison, M., Incremona, S., Irman, A., Iungo, F., Jafarinia, F. J., Jakobsson, O., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Kirchen, M., Kirwan, G., Kitégi, C., Knetsch, A., Kocon, D., Koester, P., Kononenko, O. S., Korn, G., Kostyukov, I., Kruchinin, K. O., Labate, L., Le Blanc, C., Lechner, C., Lee, P., Leemans, W., Lehrach, A., Li, X., Li, Y., Libov, V., Lifschitz, A., Lindstrøm, C. A., Litvinenko, V., Lu, W., Lundh, O., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marcelli, A., Marchetti, B., Marcouillé, O., Marocchino, A., Marteau, F., Martinez de la Ossa, A., Martins, J. L., Mason, P. D., Massimo, F., Mathieu, F., Maynard, G., Mazzotta, Z., Mironov, S., Molodozhentsev, A. Y., Morante, S., Mosnier, A., Mostacci, A., Müller, A. -S., Murphy, C. D., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Nutter, A., Osterhoff, J., Oumbarek Espinos, D., Paillard, J. -L., Papadopoulos, D. N., Patrizi, B., Pattathil, R., Pellegrino, L., Petralia, A., Petrillo, V., Piersanti, L., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Reagan, B. A., Resta-Lopez, J., Ricci, R., Romeo, S., Rossetti Conti, M., Rossi, A. R., Rossmanith, R., Rotundo, U., Roussel, E., Sabbatini, L., Santangelo, P., Sarri, G., Schaper, L., Scherkl, P., Schramm, U., Schroeder, C. B., Scifo, J., Serafini, L., Sharma, G., Sheng, Z. M., Shpakov, V., Siders, C. W., Silva, L. O., Silva, T., Simon, C., Simon-Boisson, C., Sinha, U., Sistrunk, E., Specka, A., Spinka, T. M., Stecchi, A., Stella, A., Stellato, F., Streeter, M. J. V., Sutherland, A., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G. E., Terzani, D., Toci, G., Tomassini, P., Torres, R., Ullmann, D., Vaccarezza, C., Valléau, M., Vannini, M., Vannozzi, A., Vescovi, S., Vieira, J. M., Villa, F., Wahlström, C. -G., Walczak, R., Walker, P. A., Wang, K., Welsch, A., Welsch, C. P., Weng, S. M., Wiggins, S. M., Wolfenden, J., Xia, G., Yabashi, M., Zhang, H., Zhao, Y., Zhu, J., and Zigler, A.
- Published
- 2020
- Full Text
- View/download PDF
3. Erratum to: EuPRAXIA Conceptual Design Report: Eur. Phys. J. Special Topics 229, 3675-4284 (2020), https://doi.org/10.1140/epjst/e2020-000127-8
- Author
-
Assmann, R. W., Weikum, M. K., Akhter, T., Alesini, D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Artioli, M., Aschikhin, A., Audet, T., Bacci, A., Barna, I. F., Bartocci, S., Bayramian, A., Beaton, A., Beck, A., Bellaveglia, M., Beluze, A., Bernhard, A., Biagioni, A., Bielawski, S., Bisesto, F. G., Bonatto, A., Boulton, L., Brandi, F., Brinkmann, R., Briquez, F., Brottier, F., Bründermann, E., Büscher, M., Buonomo, B., Bussmann, M. H., Bussolino, G., Campana, P., Cantarella, S., Cassou, K., Chancé, A., Chen, M., Chiadroni, E., Cianchi, A., Cioeta, F., Clarke, J. A., Cole, J. M., Costa, G., Couprie, M. -E., Cowley, J., Croia, M., Cros, B., Crump, P. A., D’Arcy, R., Dattoli, G., Del Dotto, A., Delerue, N., Del Franco, M., Delinikolas, P., De Nicola, S., Dias, J. M., Di Giovenale, D., Diomede, M., Di Pasquale, E., Di Pirro, G., Di Raddo, G., Dorda, U., Erlandson, A. C., Ertel, K., Esposito, A., Falcoz, F., Falone, A., Fedele, R., Ferran Pousa, A., Ferrario, M., Filippi, F., Fils, J., Fiore, G., Fiorito, R., Fonseca, R. A., Franzini, G., Galimberti, M., Gallo, A., Galvin, T. C., Ghaith, A., Ghigo, A., Giove, D., Giribono, A., Gizzi, L. A., Grüner, F. J., Habib, A. F., Haefner, C., Heinemann, T., Helm, A., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Hübner, M., Ibison, M., Incremona, S., Irman, A., Iungo, F., Jafarinia, F. J., Jakobsson, O., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Kirchen, M., Kirwan, G., Kitégi, C., Knetsch, A., Kocon, D., Koester, P., Kononenko, O. S., Korn, G., Kostyukov, I., Kruchinin, K. O., Labate, L., Le Blanc, C., Lechner, C., Lee, P., Leemans, W., Lehrach, A., Li, X., Li, Y., Libov, V., Lifschitz, A., Lindstrøm, C. A., Litvinenko, V., Lu, W., Lundh, O., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marcelli, A., Marchetti, B., Marcouillé, O., Marocchino, A., Marteau, F., Martinez de la Ossa, A., Martins, J. L., Mason, P. D., Massimo, F., Mathieu, F., Maynard, G., Mazzotta, Z., Mironov, S., Molodozhentsev, A. Y., Morante, S., Mosnier, A., Mostacci, A., Müller, A. -S., Murphy, C. D., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Nutter, A., Osterhoff, J., Oumbarek Espinos, D., Paillard, J. -L., Papadopoulos, D. N., Patrizi, B., Pattathil, R., Pellegrino, L., Petralia, A., Petrillo, V., Piersanti, L., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Reagan, B. A., Resta-Lopez, J., Ricci, R., Romeo, S., Rossetti Conti, M., Rossi, A. R., Rossmanith, R., Rotundo, U., Roussel, E., Sabbatini, L., Santangelo, P., Sarri, G., Schaper, L., Scherkl, P., Schramm, U., Schroeder, C. B., Scifo, J., Serafini, L., Sharma, G., Sheng, Z. M., Shpakov, V., Siders, C. W., Silva, L. O., Silva, T., Simon, C., Simon-Boisson, C., Sinha, U., Sistrunk, E., Specka, A., Spinka, T. M., Stecchi, A., Stella, A., Stellato, F., Streeter, M. J. V., Sutherland, A., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G. E., Terzani, D., Toci, G., Tomassini, P., Torres, R., Ullmann, D., Vaccarezza, C., Valléau, M., Vannini, M., Vannozzi, A., Vescovi, S., Vieira, J. M., Villa, F., Wahlström, C. -G., Walczak, R., Walker, P. A., Wang, K., Welsch, A., Welsch, C. P., Weng, S. M., Wiggins, S. M., Wolfenden, J., Xia, G., Yabashi, M., Zhang, H., Zhao, Y., Zhu, J., and Zigler, A.
- Published
- 2020
- Full Text
- View/download PDF
4. Hybrid LWFA–PWFA staging as a beam energy and brightness transformer : conceptual design and simulations
- Author
-
de la Ossa, A. Martinez, Assmann, R.W., Bussmann, M., Corde, S., Cabadağ, J. P. Couperus, Debus, A., Döpp, A., Pous, A. Ferran, Gilljohann, M. F., Heinemann, T., Hidding, B., Irman, A., Karsch, S., Kononenko, O., Kurz, T., Osterhoff, J., Pausch, R., Schöbel, S., and Schramm, U.
- Published
- 2019
5. Demonstration of a compact plasma accelerator powered by laser-accelerated electron beams
- Author
-
Kurz, T., Heinemann, T., Gilljohann, M. F., Chang, Y. Y., Couperus Cabadağ, J. P., Debus, A., Kononenko, O., Pausch, R., Schöbel, S., Assmann, R. W., Bussmann, M., Ding, H., Götzfried, J., Köhler, A., Raj, G., Schindler, S., Steiniger, K., Zarini, O., Corde, S., Döpp, A., Hidding, B., Karsch, S., Schramm, U., Martinez de la Ossa, A., and Irman, A.
- Published
- 2021
- Full Text
- View/download PDF
6. Research towards high-repetition rate laser-driven X-ray sources for imaging applications
- Author
-
Götzfried, J., Döpp, A., Gilljohann, M., Ding, H., Schindler, S., Wenz, J., Hehn, L., Pfeiffer, F., and Karsch, S.
- Published
- 2018
- Full Text
- View/download PDF
7. Simulation study of an LWFA-based electron injector for AWAKE Run 2
- Author
-
Williamson, B., Xia, G., Döbert, S., Karsch, S., and Muggli, P.
- Published
- 2018
- Full Text
- View/download PDF
8. Summary of working group 1: Electron beams from plasmas
- Author
-
Adli, E., Karsch, S., and Pompili, R.
- Published
- 2018
- Full Text
- View/download PDF
9. Dual-energy electron beams from a compact laser-driven accelerator
- Author
-
Wenz, J., Döpp, A., Khrennikov, K., Schindler, S., Gilljohann, M. F., Ding, H., Götzfried, J., Buck, A., Xu, J., Heigoldt, M., Helml, W., Veisz, L., and Karsch, S.
- Published
- 2019
- Full Text
- View/download PDF
10. Water-Window X-Ray Pulses from a Laser-Plasma Driven Undulator
- Author
-
Maier, A. R., Kajumba, N., Guggenmos, A., Werle, C., Wenz, J., Delbos, N., Zeitler, B., Dornmair, I., Schmidt, J., Gullikson, E. M., Krausz, F., Schramm, U., Kleineberg, U., Karsch, S., and Grüner, F.
- Published
- 2020
- Full Text
- View/download PDF
11. Press fit/pressure-soldered joint—improve your press fit
- Author
-
Andrusch, K., Füssel, U., Karsch, S., Pejko, M., and Nguyen, V. D.
- Published
- 2018
- Full Text
- View/download PDF
12. Pareto Optimization of a Laser Wakefield Accelerator
- Author
-
Irshad, F., Eberle, C., Foerster, F. M., Grafenstein, K. v., Haberstroh, F., Travac, E., Weisse, N., Karsch, S., and Döpp, A.
- Subjects
Accelerator Physics (physics.acc-ph) ,Plasma Physics (physics.plasm-ph) ,FOS: Computer and information sciences ,Computer Science - Machine Learning ,FOS: Physical sciences ,Physics - Accelerator Physics ,Physics - Plasma Physics ,Machine Learning (cs.LG) - Abstract
Optimization of accelerator performance parameters is limited by numerous trade-offs and finding the appropriate balance between optimization goals for an unknown system is challenging to achieve. Here we show that multi-objective Bayesian optimization can map the solution space of a laser wakefield accelerator in a very sample-efficient way. Using a Gaussian mixture model, we isolate contributions related to an electron bunch at a certain energy and we observe that there exists a wide range of Pareto-optimal solutions that trade beam energy versus charge at similar laser-to-beam efficiency. However, many applications such as light sources require particle beams at a certain target energy. Once such a constraint is introduced we observe a direct trade-off between energy spread and accelerator efficiency. We furthermore demonstrate how specific solutions can be exploited using \emph{a posteriori} scalarization of the objectives, thereby efficiently splitting the exploration and exploitation phases.
- Published
- 2023
13. Ultrabroadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation
- Author
-
Wang, T.-J., Major, Z., Ahmad, I., Trushin, S., Krausz, F., and Karsch, S.
- Published
- 2015
- Full Text
- View/download PDF
14. Multi-μJ harmonic emission energy from laser-driven plasma
- Author
-
Heissler, P., Barna, A., Mikhailova, J. M., Ma, Guangjin, Khrennikov, K., Karsch, S., Veisz, L., Földes, I. B., and Tsakiris, G. D.
- Published
- 2015
- Full Text
- View/download PDF
15. Experimental results of Trojan horse injection in a hybrid LPWFA
- Author
-
Ufer, P., Nutter, A., Chang, Y.-Y., Corde, S., Couperus Cabadağ, J. P., Debus, A., Döpp, A., Heinemann, T., Hidding, B., Gilljohann, M., Karsch, S., Köhler, A., Kononenko, O., Pausch, R., Schöbel, S., Martinez De La Ossa, A., Schramm, U., and Irman, A.
- Abstract
A hybrid (LPWFA) plasma accelerator combines the two schemes of plasma acceleration, using a laser (LWFA) and an electron beam (PWFA) to drive the plasma wave, with the goal to combine the advantages of both methods. This concept allows studies of PWFA-physics in compact setups as well as generating high-quality electron beams to fulfill the demands of secondary light sources like FELs. We present experimental results from hybrid plasma accelerators using plasma cathode injection also known as Trojan horse injection. A short-pulsed laser is used as the injector in the second stage of the accelerator propagating perpendicular to the electron beam. When timed such, that injector laser and the first cavity of the wakefield overlap, the creation of low-energy-spread witness beams have been observed.
- Published
- 2022
16. Beam driven wakefield characteristics probed by femtosecond-scale shadowgraphy
- Author
-
Schöbel, S., Pausch, R., Chang, Y.-Y., Corde, S., Couperus Cabadağ, J. P., Debus, A., Ding, H., Döpp, A., Förster, M., Gilljohann, M., Haberstroh, F., Heinemann, T., Hidding, B., Karsch, S., Köhler, A., Kononenko, O., Nutter, A., Steiniger, K., Ufer, P., Martinez De La Ossa, A., Schramm, U., and Irman, A.
- Abstract
High peak current electron beams from laser wakefield accelerators (LWFA) are capable to drive a particle driven wakefield (PWFA) in a subsequent stage. The intrinsic short duration of these driver beams opens the possibility for PWFA studies in a higher density regime of the order of 1018·cm-3. Since optical probing provides a reasonable contrast at this density range, direct insight into the particle-driven wakefields is possible. Here we present the results of femtosecond optical probing of such beam driven wakefields, showing pronounced differences in the morphology of beam driven plasma waves when surrounded by either neutral gas or a broad pre-generated plasma channel. Moreover, the shape and size of the first cavity of the wakefields correlates with the driver beam charge. The experimental results are supported by 3D particle-in-cell simulations performed with PIConGPU. This method can be extended to a detailed study of driver charge depletion by probing the evolution of the wakefield as it propagates through the plasma. This is an important step for further understanding and optimization of high energy efficiency PWFAs.
- Published
- 2022
17. Investigating novel hybrid LPWFA accelerators using start-to-end PIConGPU simulations
- Author
-
Pausch, R., Couperus, J. P., Schoebel, S., Steiniger, K., Bussmann, M., Chang, Y. Y., Ding, H., Döpp, A., Foerster, M., Gilljohann, M. F., Haberstroh, F., Heinmann, T., Knetsch, A., Köhler, A., Kononenko, O., Kurz, T., Nutter, A., Raj, G., Ufer, P., Corde, S., Hidding, B., Karsch, S., Martinez De La Ossa, A., Assmann, R., Schramm, U., Irman, A., and Debus, A.
- Subjects
hybrid ,PIConGPU ,LPWFA ,LWFA ,PWFA - Abstract
The use of accelerated electrons from a laser wakefield accelerator (LWFA) as drivers of a plasma wakefield stage (PWFA) provides compact PWFAs that can serve as a test bed for the efficient investigation and optimization of PWFAs and their development into brightness boosters. Such hybrid accelerators have been experimentally realized at HZDR and LMU to study novel injection schemes. To better understand the microscopic, nonlinear dynamic of these accelerators, the experiments were accompanied by 3D3V particle-in-cell simulations using PIConGPU. Here, we present the latest results from these numerical studies, covering injections due to hydrodynamic shocks, beam self-modulation and breakup, and cavity elongation - all accompanied by synthetic diagnostic methods that allow direct comparison with experimental measurements. Challenges such as parasitic injections, shock injections, and non-ideal driver beam dynamics will be discussed. Recent technical advances in PIConGPU that enabled the execution of these large-scale simulation campaigns are briefly covered, as well as new synthetic in situ shadowgraph and radiation diagnostics.
- Published
- 2022
18. Excitation of beam driven plasma waves in a hybrid LPWFA
- Author
-
Schöbel, S., Pausch, R., Carstens, F.-O., Chang, Y.-Y., Corde, S., Couperus Cabadağ, J. P., Debus, A., Ding, H., Döpp, A., Heinemann, T., Hidding, B., Gilljohann, M., Karsch, S., Köhler, A., Kononenko, O., Nutter, A., Ufer, P., Martinez De La Ossa, A., Schramm, U., and Irman, A.
- Abstract
High peak current electron beams from laser wakefield accelerators (LWFA) are capable to drive a particle driven wakefield (PWFA) in a subsequent stage. The intrinsic short duration of these driver beams opens the possibility for PWFA studies in a higher density regime of the order of 1018·cm-3. Since optical probing provides a reasonable contrast at this density range, direct insight into the particle-driven wakefields is possible. Here we present the results of femtosecond optical probing of such beam driven wakefields, showing pronounced differences in the morphology of beam driven plasma waves when surrounded by either neutral gas or a broad pre-generated plasma channel. Moreover, the shape and size of the first cavity of the wakefields correlates with the driver beam charge. The experimental results are supported by 3D particle-in-cell simulations performed with PIConGPU. This method can be extended to a detailed study of driver charge depletion by probing the evolution of the wakefield as it propagates through the plasma. This is an important step for further understanding and optimization of high energy efficiency PWFAs.
- Published
- 2022
19. Demonstration of Trojan horse injection in a hybrid LWFA-driven PWFA
- Author
-
Ufer, P., Nutter, A., Chang, Y.-Y., Corde, S., Couperus Cabadağ, J. P., Debus, A., Döpp, A., Moritz Foerster, F., Gilljohann, M., Heinemann, T., Hidding, B., Karsch, S., Köhler, A., Kononenko, O., Pausch, R., Schöbel, S., Martinez De La Ossa, A., Schramm, U., and Irman, A.
- Abstract
In a hybrid LWFA-driven PWFA (LPWFA) electron beams from a laser wakefield acceleration (LWFA) stage are utilized to drive a plasma wave in a subsequent plasma wakefield acceleration (PWFA) stage for acceleration of witness electron bunches to high energies. This concept allows for the exploration of PWFA-physics in a compact setup and harnessing the advantages of both plasma acceleration schemes in order to generate high-quality electron beams. Here we present results of Trojan horse injection in this hybrid plasma acceleration configuration. The DRACO laser is focused onto a gas target (LWFA stage), creating a plasma wakefield to accelerate a high peak current electron bunch. While such a beam is propagating in the second gas jet (PWFA stage), consisting of a mixture of high and low ionization threshold gas, an auxiliary low energy laser pulse intercepts the generated wakefield perpendicularly to release electrons from the highest ionization level in the first cavity. The generated witness beams show improved beam quality, such as lower energy spread compared to the drive electron beam. The realization of Trojan horse injection in LPWFA is a further step towards applications based on high brightness electron beams such as free electron lasers.
- Published
- 2022
20. Simulating hybrid laser-plasma wakefield accelerators using PIConGPU
- Author
-
Pausch, R., Couperus, J. P., Schöbel, S., Bastrakov, S., Chang, Y.-Y., Corde, S., Ding, H., Döpp, A., Foester, F. M., Gilljohann, M., Haberstroh, F., Heinemann, T., Hidding, B., Karsch, S., Koehler, A., Kononenko, O., Knetsch, A., Kurz, T., Martines De Las Ossa, A., Nutter, A., Raj, G., Steiniger, K., Schramm, U., Ufer, P., Widera, R., Irmann, A., Bussmann, M., and Debus, A.
- Subjects
hybrid ,accelerator ,PIConGPU ,LWFA ,PWFA - Abstract
An LPWFA accelerator uses electrons from a laser wakefield accelerator stage to drive a second plasma wakefield accelerator stage. This approach makes it possible to downscale PWFAs from kilometer-sized facilities to tabletop experiments and makes the improved beam quality of PWFAs available to LWFA laboratories. The experimental realization of the hybrid accelerator at HZDR was accompanied by a simulation campaign with the fully GPU accelerated, 3D3V particle-in-cell PIConGPU. Running simulations on modern GPUs allowed reducing simulation time while modeling different experimental settings in a fully three-dimensional setup. The latter enabled studying the influence of tilted shock fronts and few-cycle probes, among others. In this talk, we will not only introduce the general concept but also discuss some of the recent results obtained using particle-in-cell simulations. Moreover, the technical innovations in PIConGPU that have enabled these new types of simulations will also be briefly addressed.
- Published
- 2022
21. Temporal coherence of high-order harmonics generated at solid surfaces
- Author
-
Hemmers, D., Behmke, M., Karsch, S., Keyling, J., Major, Z., Stelzmann, C., and Pretzler, G.
- Published
- 2014
- Full Text
- View/download PDF
22. Status of the Horizon 2020 EuPRAXIA conceptual design study
- Author
-
Weikum, MK, Akhter, T, Alesini, D, Alexandrova, AS, Anania, MP, Andreev, NE, Andriyash, IA, Aschikhin, A, Assmann, RW, Audet, T, Bacci, A, Barna, IF, Beaton, A, Beck, A, Beluze, A, Bernhard, A, Bielawski, S, Bisesto, FG, Brandi, F, Brinkmann, R, Bruendermann, E, Buescher, M, Bussmann, MH, Bussolino, G, Chance, A, Chen, M, Chiadroni, E, Cianchi, A, Clarke, JA, Cole, J, Couprie, ME, Croia, M, Cros, B, Crump, PA, Dattoli, G, Del Dotto, A, Delerue, N, De Nicola, S, Dias, JM, Dorda, U, Fedele, R, Pousa, A Ferran, Ferrario, M, Filippi, F, Fiore, G, Fonseca, RA, Galimberti, M, Gallo, A, Ghaith, A, Giove, D, Giribono, A, Gizzi, LA, Gruener, FJ, Habib, AF, Haefner, C, Heinemann, T, Hidding, B, Holzer, BJ, Hooker, SM, Hosokai, T, Huebner, M, Irman, A, Jafarinia, FJ, Jaroszynski, DA, Joshi, C, Kaluza, M, Kando, M, Karger, OS, Karsch, S, Khazanov, E, Khikhlukha, D, Knetsch, A, Kocon, D, Koester, P, Kononenko, OS, Korn, G, Kostyukov, I, Kruchinin, KO, Labate, L, Le Blanc, C, Lechner, C, Leemans, W, Lehrach, A, Li, X, Libov, V, Lifschitz, A, Litvinenko, V, Lu, W, Lundh, O, Maier, AR, Malka, V, Manahan, GG, Mangles, SPD, Marchetti, B, de la Ossa, A Martinez, Martins, JL, Mason, PD, Massimo, F, Mathieu, F, Maynard, G, Mazzotta, Z, Molodozhentsev, AY, Mostacci, A, Mueller, A-S, Murphy, CD, Najmudin, Z, Nghiem, PAP, Nguyen, F, Niknejadi, P, Osterhoff, J, Espinos, D Oumbarek, Papadopoulos, DN, Patrizi, B, Petrillo, V, Pocsai, MA, Poder, K, Pompili, R, Pribyl, L, Pugacheva, D, Rajeev, PP, Romeo, S, Conti, M Rossetti, Rossi, AR, Rossmanith, R, Roussel, E, Sahai, AA, Sarri, G, Schaper, L, Scherkl, P, Schramm, U, Schroeder, CB, Scifo, J, Serafini, L, Sheng, ZM, Siders, C, Silva, LO, Silva, T, Simon, C, Sinha, U, Specka, A, Streeter, MJV, Svystun, EN, Symes, D, Szwaj, C, Tauscher, GE, Terzani, D, Thompson, N, Toci, G, Tomassini, P, Torres, R, Ullmann, D, Vaccarezza, C, Vannini, M, Vieira, JM, Villa, F, Wahlstrom, C-G, Walczak, R, Walker, PA, Wang, K, Welsch, CP, Wiggins, SM, Wolfenden, J, Xia, G, Yabashi, M, Zhu, J, Zigler, A, IOP, Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Laboratoire de physique des gaz et des plasmas (LPGP), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Leprince-Ringuet (LLR), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Laboratoire pour l'utilisation des lasers intenses (LULI), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique des Lasers, Atomes et Molécules - UMR 8523 (PhLAM), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de l'Accélérateur Linéaire (LAL), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'optique appliquée (LOA), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris), École polytechnique (X), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-École polytechnique (X)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Weikum, M. K., Akhter, T., Alesini, D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I. A., Aschikhin, A., Assmann, R. W., Audet, T., Bacci, A., Barna, I. F., Beaton, A., Beck, A., Beluze, A., Bernhard, A., Bielawski, S., Bisesto, F. G., Brandi, F., Brinkmann, R., Bruendermann, E., Buscher, M., Bussmann, M. H., Bussolino, G., Chance, A., Chen, M., Chiadroni, E., Cianchi, A., Clarke, J. A., Cole, J., Couprie, M. E., Croia, M., Cros, B., Crump, P. A., Dattoli, G., Del Dotto, A., Delerue, N., De Nicola, S., Dias, J. M., Dorda, U., Fedele, R., Ferran Pousa, A., Ferrario, M., Filippi, F., Fiore, G., Fonseca, R. A., Galimberti, M., Gallo, A., Ghaith, A., Giove, D., Giribono, A., Gizzi, L. A., Gruner, F. J., Habib, A. F., Haefner, C., Heinemann, T., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Huebner, M., Irman, A., Jafarinia, F. J., Jaroszynski, D. A., Joshi, C., Kaluza, M., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Knetsch, A., Kocon, D., Koester, P., Kononenko, O. S., Korn, G., Kostyukov, I., Kruchinin, K. O., Labate, L., Blanc, C. L., Lechner, C., Leemans, W., Lehrach, A., Li, X., Libov, V., Lifschitz, A., Litvinenko, V., Lu, W., Lundh, O., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marchetti, B., Martinez De La Ossa, A., Martins, J. L., Mason, P. D., Massimo, F., Mathieu, F., Maynard, G., Mazzotta, Z., Molodozhentsev, A. Y., Mostacci, A., Mueller, A. -S., Murphy, C. D., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Osterhoff, J., Oumbarek Espinos, D., Papadopoulos, D. N., Patrizi, B., Petrillo, V., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Rajeev, P. P., Romeo, S., Rossetti Conti, M., Rossi, A. R., Rossmanith, R., Roussel, E., Sahai, A. A., Sarri, G., Schaper, L., Scherkl, P., Schramm, U., Schroeder, C. B., Scifo, J., Serafini, L., Sheng, Z. M., Siders, C., Silva, L. O., Silva, T., Simon, C., Sinha, U., Specka, A., Streeter, M. J. V., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G. E., Terzani, D., Thompson, N., Toci, G., Tomassini, P., Torres, R., Ullmann, D., Vaccarezza, C., Vannini, M., Vieira, J. M., Villa, F., Wahlstrom, C. -G., Walczak, R., Walker, P. A., Wang, K., Welsch, C. P., Wiggins, S. M., Wolfenden, J., Xia, G., Yabashi, M., Zhu, J., Zigler, A., Weikum, M K, Akhter, T, Alesini, D, Alexandrova, A S, Anania, M P, Andreev, N E, Andriyash, I A, Aschikhin, A, Assmann, R W, Audet, T, Bacci, A, Barna, I F, Beaton, A, Beck, A, Beluze, A, Bernhard, A, Bielawski, S, Bisesto, F G, Brandi, F, Brinkmann, R, Bruendermann, E, Büscher, M, Bussmann, M H, Bussolino, G, Chance, A, Chen, M, Chiadroni, E, Cianchi, A, Clarke, J A, Cole, J, Couprie, M E, Croia, M, Cros, B, Crump, P A, Dattoli, G, Del Dotto, A, Delerue, N, De Nicola, S, Dias, J M, Dorda, U, Fedele, R, Ferran Pousa, A, Ferrario, M, Filippi, F, Fiore, G, Fonseca, R A, Galimberti, M, Gallo, A, Ghaith, A, Giove, D, Giribono, A, Gizzi, L A, Grüner, F J, Habib, A F, Haefner, C, Heinemann, T, Hidding, B, Holzer, B J, Hooker, S M, Hosokai, T, Huebner, M, Irman, A, Jafarinia, F J, Jaroszynski, D A, Joshi, C, Kaluza, M, Kando, M, Karger, O S, Karsch, S, Khazanov, E, Khikhlukha, D, Knetsch, A, Kocon, D, Koester, P, Kononenko, O S, Korn, G, Kostyukov, I, Kruchinin, K O, Labate, L, Blanc, C Le, Lechner, C, Leemans, W, Lehrach, A, Li, X, Libov, V, Lifschitz, A, Litvinenko, V, Lu, W, Lundh, O, Maier, A R, Malka, V, Manahan, G G, Mangles, S P D, Marchetti, B, Martinez de la Ossa, A, Martins, J L, Mason, P D, Massimo, F, Mathieu, F, Maynard, G, Mazzotta, Z, Molodozhentsev, A Y, Mostacci, A, Mueller, A - S, Murphy, C D, Najmudin, Z, Nghiem, P A P, Nguyen, F, Niknejadi, P, Osterhoff, J, Oumbarek Espinos, D, Papadopoulos, D N, Patrizi, B, Petrillo, V, Pocsai, M A, Poder, K, Pompili, R, Pribyl, L, Pugacheva, D, Rajeev, P P, Romeo, S, Rossetti Conti, M, Rossi, A R, Rossmanith, R, Roussel, E, Sahai, A A, Sarri, G, Schaper, L, Scherkl, P, Schramm, U, Schroeder, C B, Scifo, J, Serafini, L, Sheng, Z M, Siders, C, Silva, L O, Silva, T, Simon, C, Sinha, U, Specka, A, Streeter, M J V, Svystun, E N, Symes, D, Szwaj, C, Tauscher, G E, Terzani, Davide, Thompson, N, Toci, G, Tomassini, P, Torres, R, Ullmann, D, Vaccarezza, C, Vannini, M, Vieira, J M, Villa, F, Wahlstrom, C - G, Walczak, R, Walker, P A, Wang, K, Welsch, C P, Wiggins, S M, Wolfenden, J, Xia, G, Yabashi, M, Zhu, J, and Zigler, A
- Subjects
electron ,History ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,Physics and Astronomy(all) ,01 natural sciences ,7. Clean energy ,Plasmas, accelerators ,010305 fluids & plasmas ,Education ,Accelerator Physics ,Acceleration ,accelerators ,Conceptual design ,0103 physical sciences ,site ,ddc:530 ,010306 general physics ,plasma ,QC ,Open innovation ,Focus (computing) ,Detector ,acceleration ,Plasma acceleration ,Accelerators and Storage Rings ,Computer Science Applications ,laser ,MC3: Novel Particle Sources and Acceleration Techniques ,Plasmas ,Systems engineering ,Physics::Accelerator Physics ,Plasmas (physics) | Lasers | Laser wakefield - Abstract
The Horizon 2020 Project EuPRAXIA (European Plasma Research Accelerator with eXcellence In Applications) is producing a conceptual design report for a highly compact and cost-effective European facility with multi-GeV electron beams accelerated using plasmas. EuPRAXIA will be set up as a distributed Open Innovation platform with two construction sites, one with a focus on beam-driven plasma acceleration (PWFA) and another site with a focus on laser-driven plasma acceleration (LWFA). User areas at both sites will provide access to FEL pilot experiments, positron generation and acceleration, compact radiation sources, and test beams for HEP detector development. Support centres in four different countries will complement the pan-European implementation of this infrastructure., Proceedings of the 10th Int. Particle Accelerator Conf., IPAC2019, Melbourne, Australia
- Published
- 2019
23. Erratum to: EuPRAXIA Conceptual Design Report (The European Physical Journal Special Topics, (2020), 229, 24, (3675-4284), 10.1140/epjst/e2020-000127-8)
- Author
-
Assmann R. W., Weikum M. K., Akhter T., Alesini D., Alexandrova A. S., Anania M. P., Andreev N. E., Andriyash I., Artioli M., Aschikhin A., Audet T., Bacci A., Barna I. F., Bartocci S., Bayramian A., Beaton A., Beck A., Bellaveglia M., Beluze A., Bernhard A., Biagioni A., Bielawski S., Bisesto F. G., Bonatto A., Boulton L., Brandi F., Brinkmann R., Briquez F., Brottier F., Brundermann E., Buscher M., Buonomo B., Bussmann M. H., Bussolino G., Campana P., Cantarella S., Cassou K., Chance A., Chen M., Chiadroni E., Cianchi A., Cioeta F., Clarke J. A., Cole J. M., Costa G., Couprie M. -E., Cowley J., Croia M., Cros B., Crump P. A., D'Arcy R., Dattoli G., Del Dotto A., Delerue N., Del Franco M., Delinikolas P., De Nicola S., Dias J. M., Di Giovenale D., Diomede M., Di Pasquale E., Di Pirro G., Di Raddo G., Dorda U., Erlandson A. C., Ertel K., Esposito A., Falcoz F., Falone A., Fedele R., Ferran Pousa A., Ferrario M., Filippi F., Fils J., Fiore G., Fiorito R., Fonseca R. A., Franzini G., Galimberti M., Gallo A., Galvin T. C., Ghaith A., Ghigo A., Giove D., Giribono A., Gizzi L. A., Gruner F. J., Habib A. F., Haefner C., Heinemann T., Helm A., Hidding B., Holzer B. J., Hooker S. M., Hosokai T., Hubner M., Ibison M., Incremona S., Irman A., Iungo F., Jafarinia F. J., Jakobsson O., Jaroszynski D. A., Jaster-Merz S., Joshi C., Kaluza M., Kando M., Karger O. S., Karsch S., Khazanov E., Khikhlukha D., Kirchen M., Kirwan G., Kitegi C., Knetsch A., Kocon D., Koester P., Kononenko O. S., Korn G., Kostyukov I., Kruchinin K. O., Labate L., Le Blanc C., Lechner C., Lee P., Leemans W., Lehrach A., Li X., Li Y., Libov V., Lifschitz A., Lindstrom C. A., Litvinenko V., Lu W., Lundh O., Maier A. R., Malka V., Manahan G. G., Mangles S. P. D., Marcelli A., Marchetti B., Marcouille O., Marocchino A., Marteau F., Martinez de la Ossa A., Martins J. L., Mason P. D., Massimo F., Mathieu F., Maynard G., Mazzotta Z., Mironov S., Molodozhentsev A. Y., Morante S., Mosnier A., Mostacci A., Muller A. -S., Murphy C. D., Najmudin Z., Nghiem P. A. P., Nguyen F., Niknejadi P., Nutter A., Osterhoff J., Oumbarek Espinos D., Paillard J. -L., Papadopoulos D. N., Patrizi B., Pattathil R., Pellegrino L., Petralia A., Petrillo V., Piersanti L., Pocsai M. A., Poder K., Pompili R., Pribyl L., Pugacheva D., Reagan B. A., Resta-Lopez J., Ricci R., Romeo S., Rossetti Conti M., Rossi A. R., Rossmanith R., Rotundo U., Roussel E., Sabbatini L., Santangelo P., Sarri G., Schaper L., Scherkl P., Schramm U., Schroeder C. B., Scifo J., Serafini L., Sharma G., Sheng Z. M., Shpakov V., Siders C. W., Silva L. O., Silva T., Simon C., Simon-Boisson C., Sinha U., Sistrunk E., Specka A., Spinka T. M., Stecchi A., Stella A., Stellato F., Streeter M. J. V., Sutherland A., Svystun E. N., Symes D., Szwaj C., Tauscher G. E., Terzani D., Toci G., Tomassini P., Torres R., Ullmann D., Vaccarezza C., Valleau M., Vannini M., Vannozzi A., Vescovi S., Vieira J. M., Villa F., Wahlstrom C. -G., Walczak R., Walker P. A., Wang K., Welsch A., Welsch C. P., Weng S. M., Wiggins S. M., Wolfenden J., Xia G., Yabashi M., Zhang H., Zhao Y., Zhu J., Zigler A., Assmann, R. W., Weikum, M. K., Akhter, T., Alesini, D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Artioli, M., Aschikhin, A., Audet, T., Bacci, A., Barna, I. F., Bartocci, S., Bayramian, A., Beaton, A., Beck, A., Bellaveglia, M., Beluze, A., Bernhard, A., Biagioni, A., Bielawski, S., Bisesto, F. G., Bonatto, A., Boulton, L., Brandi, F., Brinkmann, R., Briquez, F., Brottier, F., Brundermann, E., Buscher, M., Buonomo, B., Bussmann, M. H., Bussolino, G., Campana, P., Cantarella, S., Cassou, K., Chance, A., Chen, M., Chiadroni, E., Cianchi, A., Cioeta, F., Clarke, J. A., Cole, J. M., Costa, G., Couprie, M. -E., Cowley, J., Croia, M., Cros, B., Crump, P. A., D'Arcy, R., Dattoli, G., Del Dotto, A., Delerue, N., Del Franco, M., Delinikolas, P., De Nicola, S., Dias, J. M., Di Giovenale, D., Diomede, M., Di Pasquale, E., Di Pirro, G., Di Raddo, G., Dorda, U., Erlandson, A. C., Ertel, K., Esposito, A., Falcoz, F., Falone, A., Fedele, R., Ferran Pousa, A., Ferrario, M., Filippi, F., Fils, J., Fiore, G., Fiorito, R., Fonseca, R. A., Franzini, G., Galimberti, M., Gallo, A., Galvin, T. C., Ghaith, A., Ghigo, A., Giove, D., Giribono, A., Gizzi, L. A., Gruner, F. J., Habib, A. F., Haefner, C., Heinemann, T., Helm, A., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Hubner, M., Ibison, M., Incremona, S., Irman, A., Iungo, F., Jafarinia, F. J., Jakobsson, O., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Kirchen, M., Kirwan, G., Kitegi, C., Knetsch, A., Kocon, D., Koester, P., Kononenko, O. S., Korn, G., Kostyukov, I., Kruchinin, K. O., Labate, L., Le Blanc, C., Lechner, C., Lee, P., Leemans, W., Lehrach, A., Li, X., Li, Y., Libov, V., Lifschitz, A., Lindstrom, C. A., Litvinenko, V., Lu, W., Lundh, O., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marcelli, A., Marchetti, B., Marcouille, O., Marocchino, A., Marteau, F., Martinez de la Ossa, A., Martins, J. L., Mason, P. D., Massimo, F., Mathieu, F., Maynard, G., Mazzotta, Z., Mironov, S., Molodozhentsev, A. Y., Morante, S., Mosnier, A., Mostacci, A., Muller, A. -S., Murphy, C. D., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Nutter, A., Osterhoff, J., Oumbarek Espinos, D., Paillard, J. -L., Papadopoulos, D. N., Patrizi, B., Pattathil, R., Pellegrino, L., Petralia, A., Petrillo, V., Piersanti, L., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Reagan, B. A., Resta-Lopez, J., Ricci, R., Romeo, S., Rossetti Conti, M., Rossi, A. R., Rossmanith, R., Rotundo, U., Roussel, E., Sabbatini, L., Santangelo, P., Sarri, G., Schaper, L., Scherkl, P., Schramm, U., Schroeder, C. B., Scifo, J., Serafini, L., Sharma, G., Sheng, Z. M., Shpakov, V., Siders, C. W., Silva, L. O., Silva, T., Simon, C., Simon-Boisson, C., Sinha, U., Sistrunk, E., Specka, A., Spinka, T. M., Stecchi, A., Stella, A., Stellato, F., Streeter, M. J. V., Sutherland, A., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G. E., Terzani, D., Toci, G., Tomassini, P., Torres, R., Ullmann, D., Vaccarezza, C., Valleau, M., Vannini, M., Vannozzi, A., Vescovi, S., Vieira, J. M., Villa, F., Wahlstrom, C. -G., Walczak, R., Walker, P. A., Wang, K., Welsch, A., Welsch, C. P., Weng, S. M., Wiggins, S. M., Wolfenden, J., Xia, G., Yabashi, M., Zhang, H., Zhao, Y., Zhu, J., and Zigler, A.
- Abstract
Figure 20.1 was not correct in the published article. The original article has been corrected. The published apologizes for the inconvenience.
- Published
- 2020
24. Gas-Dynamic Density Downramp Injection in a Beam-Driven Plasma Wakefield Accelerator
- Author
-
Couperus Cabadağ, J. P., Pausch, R., Schöbel, S., Bussmann, M., Chang, Y.-Y., Corde, S., Debus, A., Ding, H., Döpp, A., Foerster, F. M., Gilljohann, M., Haberstroh, F., Heinemann, T., Hidding, B., Karsch, S., Koehler, A., Kononenko, O., Knetsch, A., Kurz, T., Martinez de la Ossa, A., Nutter, A., Raj, G., Steiniger, K., Schramm, U., Ufer, P., Irman, A., Laboratoire d'optique appliquée (LOA), and École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Plasma-beam interactions ,Novel acceleration methods ,[PHYS.PHYS.PHYS-PLASM-PH]Physics [physics]/Physics [physics]/Plasma Physics [physics.plasm-ph] ,Physics::Plasma Physics ,Particle-in-cell ,Physics::Accelerator Physics ,ddc:530 ,LWFA ,PWFA ,Particle acceleration in plasmas ,Beam-driven plasma acceleration ,QC ,Downramp injection - Abstract
International audience; We present the experimental demonstration of density downramp injection at a gas-dynamic shock in a beam-driven plasma accelerator. The ultrashort driver electron beam with a peak-current exceeding 10 kA allows operation in the blowout regime and enables injection of electron witness bunches at gentle density ramps, i.e., longer than the plasma wavelength, which nurtures prospects for ultralow bunch emittance. By precision control over the position of injection we show that these bunches can be energy-tuned in acceleration gradients of near 120 GV m−1.
- Published
- 2021
25. Ultra-broadband near-infrared pulse generation by noncollinear OPA with angular dispersion compensation
- Author
-
Wang, T.-J., Major, Z., Ahmad, I., Trushin, S. A., Krausz, F., and Karsch, S.
- Published
- 2010
- Full Text
- View/download PDF
26. Frontend light source for short-pulse pumped OPCPA system
- Author
-
Ahmad, I., Trushin, S. A., Major, Z., Wandt, C., Klingebiel, S., Wang, T.-J., Pervak, V., Popp, A., Siebold, M., Krausz, F., and Karsch, S.
- Published
- 2009
- Full Text
- View/download PDF
27. Physics of nanocoulomb-class electron beams in laser-plasma wakefields
- Author
-
G��tzfried, J., D��pp, A., Gilljohann, M., Foerster, M., Ding, H., Schindler, S., Schilling, G., Buck, A., Veisz, L., and Karsch, S.
- Subjects
Accelerator Physics (physics.acc-ph) ,FOS: Physical sciences ,Physics::Accelerator Physics ,Physics - Accelerator Physics ,Optics (physics.optics) ,Physics - Optics - Abstract
Laser wakefield acceleration (LWFA) and its particle-driven counterpart, plasma wakefield acceleration (PWFA), are commonly treated as separate, though related branches of high-gradient plasma-based acceleration. However, novel proposed schemes are increasingly residing at the interface of both concepts where the understanding of their interplay becomes crucial. Here, we report on experiments covering a wide range of parameters by using nanocoulomb-class quasi-monoenergetic electron beams from LWFA with a 100-TW-class laser. Based on a controlled electron injection, these beams reach record-level performance in terms of laser-to-beam energy transfer efficiency (up to 10%), spectral charge density (regularly exceeding 10 pC/MeV) and divergence (1 mrad full width at half maximum divergence). The impact of charge fluctuations on the energy spectra of electron bunches is assessed for different laser parameters, including a few-cycle laser, followed by a presentation of results on beam loading in LWFA with two electron bunches. This scenario is particularly promising to provide high-quality electron beams by using one of the bunches to either tailor the laser wakefield via beam loading or to drive its own, beam-dominated wakefield. We present experimental evidence for the latter, showing a varying acceleration of a low-energy witness beam with respect to the charge of a high-energy drive beam in a spatially separate gas target. With the increasing availability of petawatt-class lasers the access to this new regime of laser-plasma wakefield acceleration will be further facilitated, thus providing new paths towards low-emittance beam generation for future plasma-based colliders or light sources.
- Published
- 2020
28. Erratum to: EuPRAXIA Conceptual Design Report
- Author
-
Assmann, RW, Weikum, MK, Akhter, T, Alesini, D, Alexandrova, AS, Anania, MP, Andreev, NE, Andriyash, I, Artioli, M, Aschikhin, A, Audet, T, Bacci, A, Barna, IF, Bartocci, S, Bayramian, A, Beaton, A, Beck, A, Bellaveglia, M, Beluze, A, Bernhard, A, Biagioni, A, Bielawski, S, Bisesto, FG, Bonatto, A, Boulton, L, Brandi, F, Brinkmann, R, Briquez, F, Brottier, F, Bruendermann, E, Buescher, M, Buonomo, B, Bussmann, MH, Bussolino, G, Campana, P, Cantarella, S, Cassou, K, Chance, A, Chen, M, Chiadroni, E, Cianchi, A, Cioeta, F, Clarke, JA, Cole, JM, Costa, G, Couprie, M-E, Cowley, J, Croia, M, Cros, B, Crump, PA, D'Arcy, R, Dattoli, G, Del Dotto, A, Delerue, N, Del Franco, M, Delinikolas, P, De Nicola, S, Dias, JM, Di Giovenale, D, Diomede, M, Di Pasquale, E, Di Pirro, G, Di Raddo, G, Dorda, U, Erlandson, AC, Ertel, K, Esposito, A, Falcoz, F, Falone, A, Fedele, R, Ferran Pousa, A, Ferrario, M, Filippi, F, Fils, J, Fiore, G, Fiorito, R, Fonseca, RA, Franzini, G, Galimberti, M, Gallo, A, Galvin, TC, Ghaith, A, Ghigo, A, Giove, D, Giribono, A, Gizzi, LA, Gruener, FJ, Habib, AF, Haefner, C, Heinemann, T, Helm, A, Hidding, B, Holzer, BJ, Hooker, SM, Hosokai, T, Huebner, M, Ibison, M, Incremona, S, Irman, A, Iungo, F, Jafarinia, FJ, Jakobsson, O, Jaroszynski, DA, Jaster-Merz, S, Joshi, C, Kaluza, M, Kando, M, Karger, OS, Karsch, S, Khazanov, E, Khikhlukha, D, Kirchen, M, Kirwan, G, Kitegi, C, Knetsch, A, Kocon, D, Koester, P, Kononenko, OS, Korn, G, Kostyukov, I, Kruchinin, KO, Labate, L, Le Blanc, C, Lechner, C, Lee, P, Leemans, W, Lehrach, A, Li, X, Li, Y, Libov, V, Lifschitz, A, Lindstrom, CA, Litvinenko, V, Lu, W, Lundh, O, Maier, AR, Malka, V, Manahan, GG, Mangles, SPD, Marcelli, A, Marchetti, B, Marcouille, O, Marocchino, A, Marteau, F, Martinez de la Ossa, A, Martins, JL, Mason, PD, Massimo, F, Mathieu, F, Maynard, G, Mazzotta, Z, Mironov, S, Molodozhentsev, AY, Morante, S, Mosnier, A, Mostacci, A, Mueller, A-S, Murphy, CD, Najmudin, Z, Nghiem, PAP, Nguyen, F, Niknejadi, P, Nutter, A, Osterhoff, J, Oumbarek Espinos, D, Paillard, J-L, Papadopoulos, DN, Patrizi, B, Pattathil, R, Pellegrino, L, Petralia, A, Petrillo, V, Piersanti, L, Pocsai, MA, Poder, K, Pompili, R, Pribyl, L, Pugacheva, D, Reagan, BA, Resta-Lopez, J, Ricci, R, Romeo, S, Rossetti Conti, M, Rossi, AR, Rossmanith, R, Rotundo, U, Roussel, E, Sabbatini, L, Santangelo, P, Sarri, G, Schaper, L, Scherkl, P, Schramm, U, Schroeder, CB, Scifo, J, Serafini, L, Sharma, G, Sheng, ZM, Shpakov, V, Siders, CW, Silva, LO, Silva, T, Simon, C, Simon-Boisson, C, Sinha, U, Sistrunk, E, Specka, A, Spinka, TM, Stecchi, A, Stella, A, Stellato, F, Streeter, MJV, Sutherland, A, Svystun, EN, Symes, D, Szwaj, C, Tauscher, GE, Terzani, D, Toci, G, Tomassini, P, Torres, R, Ullmann, D, Vaccarezza, C, Valleau, M, Vannini, M, Vannozzi, A, Vescovi, S, Vieira, JM, Villa, F, Wahlstrom, C-G, Walczak, R, Walker, PA, Wang, K, Welsch, A, Welsch, CP, Weng, SM, Wiggins, SM, Wolfenden, J, Xia, G, Yabashi, M, Zhang, H, Zhao, Y, Zhu, J, Zigler, A, Engineering & Physical Science Research Council (EPSRC), Commission of the European Communities, and Science and Technology Facilities Council (STFC)
- Subjects
Science & Technology ,02 Physical Sciences ,Physics ,Fluids & Plasmas ,Physical Sciences ,Physics, Multidisciplinary ,ddc:530 ,01 Mathematical Sciences ,Applied Physics - Abstract
Figure 20.1 was not correct in the published article. The original article has been corrected. The published apologizes for the inconvenience.
- Published
- 2020
29. Start-to-end simulations Modeling hybrid plasma accelerator experiments with PIConGPU
- Author
-
Pausch, R., Bachmann, M., Garten, M., Hübl, A., Steiniger, K., Widera, R., Kurz, T., Schöbel, S., Chang, Y.-Y., Couperus Cabadağ, J. P., Köhler, A., Zarini, O., Heinemann, T., Ding, H., Döpp, A., Gilljohann, M. F., Kononenko, O., Raj, G., Corde, S., Hidding, B., Karsch, S., Assmann, R., Martinez De La Ossa, A., Irman, A., Schramm, U., and Debus, A.
- Subjects
hybrid ,PIConGPU ,LPWFA - Abstract
A brief summary of the evolution of LPWFA hybrid simulations and why start-to end simulations are needed to model the LPWFA setup.
- Published
- 2020
30. Laser Accelerated, High Quality Ion Beams
- Author
-
Roth, M., Blazevic, A., Brambrink, E., Geissel, M., Cowan, T. E., Fuchs, J., Kemp, A., Ruhl, H., Audebert, P., Cobble, J., Fernandez, J., Hegelich, M., Letzring, S., Ledingham, K., McKenna, P., Clarke, R., Neely, D., Karsch, S., Habs, D., and Schreiber, J.
- Published
- 2005
- Full Text
- View/download PDF
31. Ultra-low emittance, high current proton beams produced with a laser-virtual cathode sheath accelerator
- Author
-
Cowan, T.E., Fuchs, J., Ruhl, H., Sentoku, Y., Kemp, A., Audebert, P., Roth, M., Stephens, R., Barton, I., Blazevic, A., Brambrink, E., Cobble, J., Fernández, J.C., Gauthier, J.-C., Geissel, M., Hegelich, M., Kaae, J., Karsch, S., Le Sage, G.P., Letzring, S., Manclossi, M., Meyroneinc, S., Newkirk, A., Pépin, H., and Renard-LeGalloudec, N.
- Published
- 2005
- Full Text
- View/download PDF
32. M.I-12: short pulse laser generated ion beams for fast ignition
- Author
-
Geissel, M., Roth, M., Allen, M., Audebert, P., Basko, M., Blažević, A., Brambrink, E., Cobble, J., Cowan, T.E., Cuneo, M.E., Fernández, J.C., Fuchs, J., Gauthier, J.-C., Hegelich, M., and Karsch, S.
- Published
- 2005
- Full Text
- View/download PDF
33. Elemental Analysis on Group-III Nitrides Using Heavy Ion ERD
- Author
-
Dollinger, G., Karsch, S., Ambacher, O., Angerer, H., Bergmaier, A., Schmelmer, O., and Stutzmann, M.
- Published
- 1997
- Full Text
- View/download PDF
34. Modeling hybrid plasma accelerator experiments with PIConGPU
- Author
-
Pausch, R., Bussmann, M., Garten, M., Hübl, A., Steiniger, K., Widera, R., Kurz, T., Schöbel, S., Chang, Y.-Y., Couperus Cabadağ, J. P., Köhler, A., Zarini, O., Heinemann, T., Ding, H., Döpp, A., Gilljohann, M. F., Kononeko, O., Raj, G., Corde, S., Hidding, B., Karsch, S., Martinez De La Ossa, A., Irman, A., Schramm, U., and Debus, A.
- Subjects
hybrid ,PIConGPU ,LPWFA - Abstract
Utilizing laser-wakefield accelerated (LWFA) electrons to drive aplasma-wakefield accelerator (PWFA) holds great promise for realizingcentimeter-scale electron accelerators providing ultra-high brightnessbeams. Recent experiments at HZDR could demonstrate for the first timesuch an electron acceleration in a nonlinear PWFA plasma wakefield. Fordriving this compact hybrid accelerator setup, high-charge electronbunches from LWFA self-truncated ionization injection were used.In this talk, we present recent results of the accompanying simulationcampaign performed with the 3D3V particle-in-cell code PIConGPU. Thesesimulations model the geometry, density distributions, laser modes, andgas dopings as determined in the experiments. The simulation conditionsresemble the experiment to a very high degree and thus provide goodcomparability between experiment and simulation. Additionally, thewealth of information provided by the in-situ data analysis of PIConGPU provides insight into the plasma dynamics, otherwise inaccessible inexperiments.From an algorithmic and computational perspective, we modeled the hybridaccelerator from start to end in a single simulation scenario. Wediscuss the associated challenges in maintaining numerical stability andexperimental comparability of these long-duration simulations.
- Published
- 2019
35. Modeling the L|PWFA hybrid accelerator using PIConGPU
- Author
-
Debus, A., Pausch, R., Steiniger, K., Hübl, A., Widera, R., Kurz, T., Schöbel, S., Chang, Y.-Y., Couperus Cabadağ, J. P., Köhler, A., Heinemann, T., Ding, H., Döpp, A., Giljohann, M., Kononenko, O., Gaurav, R., Corde, S., Hidding, B., Karsch, S., Martinez De La Ossa, A., Irman, A., and Schramm, U.
- Subjects
start-to-end simulation ,PIC ,hybrid L|PWFA ,LWFA ,laser wakefield acceleration ,particle-in-cell simulations ,plasma wakefield acceleration ,PWFA - Abstract
The hybrid L|PWFA acceleration scheme combines laser- (LWFA) with plasma-wakefield acceleration (PWFA) to provide an ultra-compact, high-brightness electron source. Recently, the acceleration of a witness bunch using this hybrid scheme was demonstrated at HZDR. In this talk, we present recent start-to-end simulations, that accompanied the experimental campaign, and provided fundamental insights into the injection and acceleration process of this novel, compact accelerator. These accompanying simulations were performed using the 3D3V particle-in-cell code PIConGPU. A significantly enhanced agreement between theoretical predictions and experimental measurements could be achieved by resembling the experiment to a very high degree. Modeling the geometry, density distributions, laser modes, and gas dopings as measured in the experiments provided good comparability between experiment and simulation. With that degree of agreement, the wealth of information provided by the in-situ data analysis of PIConGPU provided insight into the plasma dynamics, otherwise inaccessible in experiments. The talk will not only focus on explaining the fundamental physical process behind this hybrid scheme but will further elaborate on the essential details that produce the quasi-monoenergetic witness bunches seen in experiment. Furthermore, we will discuss the associated challenges in maintaining numerical stability and experimental comparability of these long-duration simulations.
- Published
- 2019
36. First demonstration of a hybrid laser-electron-beam driven plasma wakefield accelerator
- Author
-
Kurz, T., Heinemann, T., Schöbel, S., Couperus Cabadağ, J. P., Kononenko, O., Chang, Y.-Y., Bussmann, M., Corde, S., Debus, A., Ding, H., Döpp, A., Gilljohann, M. F., Hidding, B., Karsch, S., Köhler, A., Pausch, R., Zarini, O., Schramm, U., Martinez De La Ossa, A., and Irman, A.
- Subjects
Electron beam ,Physics::Accelerator Physics ,Laser ,Plasma Accelerator ,Peak Current ,Hybrid - Abstract
Plasma based electron acceleration is widely considered as a promising concept for a compact electron accelerator with broad range of future applications from high energy physics to photon science. These accelerators can be powered by either ultra-intense laser beams (LWFA) or relativistic high-current-density particle beams (PWFA). Here, we report on a novel approach which combines both schemes in a truly compact experimental setup. In our “LWFA + PWFA” hybrid accelerator, the electron beam generated by a LWFA stage drives a subsequent PWFA stage where a witness beam is trapped and accelerated. This strategy aims to combine the unique features of both plasma acceleration techniques, the LWFA stage provides with a compact source of high-current electron beams required as PWFA drivers, while the PWFA stage acts as an energy and brightness transformer for the LWFA output. In this work, we show the first experimental evidence of accelerating a distinct witness bunch in a LWFA-driven PWFA (LPWFA), within only about one millimeter acceleration distance. In the beam self-ionizing case, we observe witness energies of around 50 MeV. By utilizing a counter-propagating pre-ionization laser, the interaction with the plasma becomes stronger, increasing the final energies to around 120 MeV. Thus, yielding a field gradient of (46+-11) GeV/m which is comparable to what has been shown at large scale facilities.
- Published
- 2019
37. Direct observation of plasma waves and dynamics induced by laser-accelerated electron beams
- Author
-
Gilljohann, M, Ding, H, Doepp, A, Goetzfried, J, Schindler, S, Schilling, G, Corde, S, Debus, A, Heinemann, T, Hidding, B, Hooker, S, Irman, A, Kononenko, O, Kurz, T, De La Ossa, A, Schramm, U, Karsch, S, Laboratoire d'optique appliquée (LOA), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris), and École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Accelerator Physics (physics.acc-ph) ,Physics ,QC1-999 ,[PHYS.PHYS.PHYS-ACC-PH]Physics [physics]/Physics [physics]/Accelerator Physics [physics.acc-ph] ,FOS: Physical sciences ,plasma wakefield electron acceleration ,high power laser ,Physics::Plasma Physics ,Physics::Accelerator Physics ,ddc:530 ,Physics - Accelerator Physics ,advanced accelerator ,QC ,laser wakefield - Abstract
Plasma wakefield acceleration (PWFA) is a novel acceleration technique with promising prospects for both particle colliders and light sources. However, PWFA research has so far been limited to a few large-scale accelerator facilities worldwide. Here, we present first results on plasma wakefield generation using electron beams accelerated with a 100-TW-class Ti:sapphire laser. Because of their ultrashort duration and high charge density, the laser-accelerated electron bunches are suitable to drive plasma waves at electron densities in the order of 1019 cm−3. We capture the beam-induced plasma dynamics with femtosecond resolution using few-cycle optical probing and, in addition to the plasma wave itself, we observe a distinctive transverse ion motion in its trail. This previously unobserved phenomenon can be explained by the ponderomotive force of the plasma wave acting on the ions, resulting in a modulation of the plasma density over many picoseconds. Because of the scaling laws of plasma wakefield generation, results obtained at high plasma density using high-current laser-accelerated electron beams can be readily scaled to low-density systems. Laser-driven PWFA experiments can thus act as miniature models for their larger, conventional counterparts. Furthermore, our results pave the way towards a novel generation of laser-driven PWFA, which can potentially provide ultralow emittance beams within a compact setup.
- Published
- 2019
38. I-BEAT: Ultrasonic method for online measurement of the energy distribution of a single ion bunch
- Author
-
Haffa, D., Yang, R., Bin, J., Lehrack, S., Brack, F.-E., Ding, H., Englbrecht, F., Gao, Y., Gaus, L., Gebhard, J., Gilljohann, M., Götzfried, J., Hartmann, J., Herr, S., Hilz, P., Kraft, S., Kreuzer, C., Kroll, F., Lindner, F. H., Metzkes-Ng, J., Ostermayr, T. M., Ridente, E., Rösch, T. F., Schilling, G., Schlenvoigt, H.-P., Speicher, M., Taray, D., Würl, M., Zeil, K., Schramm, U., Karsch, S., Parodi, K., Bolton, P., Schreiber, J., and Assmann, W.
- Subjects
Physics::Accelerator Physics ,ion spectrometer ,laser ion acceleration - Abstract
the shape of a wave carries all information about the spatial and temporal structure of its source, given that the medium and its properties are known. Most modern imaging methods seek to utilize this nature of waves originating from Huygens’ principle. We discuss the retrieval of the complete kinetic energy distribution from the acoustic trace that is recorded when a short ion bunch deposits its energy in water. this novel method, which we refer to as Ion-Bunch energy Acoustic tracing (I-BeAt), is a refinement of the ionoacoustic approach. With its capability of completely monitoring a single, focused proton bunch with prompt readout and high repetition rate, I-BeAt is a promising approach to meet future requirements of experiments and applications in the field of laser-based ion acceleration. We demonstrate its functionality at two laser-driven ion sources for quantitative online determination of the kinetic energy distribution in the focus of single proton bunches
- Published
- 2019
39. Start-to-end simulations of L|PWFA hybrid accelerator experiments using PIConGPU
- Author
-
Pausch, R., Debus, A., Steiniger, K., Garten, M., Hübl, A., Widera, R., Kurz, T., Schöbel, S., Couperus Cabadağ, J. P., Chang, Y.-Y., Köhler, A., Zarini, O., Heinemann, T., Gilljohann, M. F., Ding, H., Götzfried, J., Döpp, A., Kononenko, O., Raj, G., Martines De La Ossa, A., Assmann, R., Hidding, B., Karsch, S., Code, S., Irman, A., Schramm, U., and Bussmann, M.
- Subjects
hybrid ,PIConGPU ,LPWFA ,alpaka ,ISAAC - Abstract
The poster gives an overview of the LPWFA experimental setup and explains in detail the accompanying simulation campaign.
- Published
- 2019
40. Excitation of beam-driven plasma-waves in a hybrid L|PWFA
- Author
-
Schöbel, S., Kurz, T., Debus, A., Kononenko, O., Heinemann, T., Couperus Cabadağ, J. P., Chang, Y.-Y., Pausch, R., Bock, S., Bussmann, M., Corde, S., Ding, H., Döpp, A., Gilljohann, M. F., Köhler, A., Hidding, B., Karsch, S., Zarini, O., Schramm, U., Martinez De La Ossa, A., and Irman, A.
- Abstract
Recent progress in laser wakefield acceleration (LWFA) has demonstrated the generation of high peak current electron beams with improved shot to shot stability [1]. Using high-current electron beams from a LWFA as drivers of a beam-driven plasma wakefield accelerator (PWFA) has been proposed as a beam energy and brightness transformer [2], aiming to fulfill the demanding quality requirements for applications such as FELs. It has been demonstrated experimentaly that electron beams from LWFA can actually drive plasma wakefields by themselves [3]. In order to further study the generation of plasma waves in the PWFA stage a sub-10 fs probe pulse was deployed and installed at HZDR. We observed beam driven plasma waves at different plasma densities, showing the capability of the LWFA beam to drive plasma wakefields in the self-ionizing regime. Furthermore we observed a correlation between the energy loss of the driver beam and the shape of the plasma wave. This enables us to find an optimum parameter set towards the experimental demonstration of the hybrid LPWFA. References [1] J. P. Couperus, R. Pausch, A. Köhler, O. Zarini, J. M. Krämer, M. Garten, A. Huebl, R. Gebhardt, U. Helbig, S. Bock, K. Zeil, A. Debus, M. Bussmann, U. Schramm, and A. Irman. Demonstration of a beam loaded nanocoulomb-class laser wakefield accelerator. Nature Communications, pages 1-7, 2017. [2] A. Martinez de la Ossa, R.W. Assmann, M. Bussmann, S. Corde, J. P. Couperus Cabadağ, A. Debus, A. Döpp, A. Ferran Pousa, M. F.Gilljohann, T. Heinemann, B. Hidding, A. Irman, S. Karsch, O. Kononenko, T. Kurz, J. Osterhoff, R. Pausch, and U. Schramm Hybrid LWFA | PWFA Staging as a Beam Energy and Brightness Transformer: Conceptual Design and Simulations. Phil. Trans. R. Soc. A. Accepted for publication., 2019, https://arxiv.org/abs/1903.04640. [3] M. F. Gilljohann, H. Ding, A. Döpp, J. Götzfried, S. Schindler, G. Schilling, S. Corde, A. Debus, T. Heinemann, B. Hidding, S. M. Hooker, A. Irman, O. Kononenko, T. Kurz, A. Martinez de la Ossa, U. Schramm, and S. Karsch. Direct Observation of Plasma Waves and Dynamics Induced by Laser-Accelerated Electron Beams. Phys. Rev. X, 9:011046, Mar 2019
- Published
- 2019
41. Hybrid LWFA-PWFA staging; from concept to proof-of-principle experiments
- Author
-
Irman, A., Bussmann, M., Chang, Y.-Y., Corde, S., Couperus Cabadağ, J. P., Debus, A., Ding, H., Döpp, A., Heinemann, T., Hidding, B., Gilljohann, M. F., Götzfried, J., Karsch, S., Kononenko, O., Kurz, T., Köhler, A., Martinez De La Ossa, A., Pausch, R., Raj, G., Schindler, S., Schöbel, S., Zarini, O., Assmann, R. W., and Schramm, U.
- Subjects
Physics::Accelerator Physics ,laser wakefield acceleration ,plasma wakefield acceleration - Abstract
Beam-driven plasma wakefield accelerators (PWFAs) offer a unique regime for the generation and acceleration of high-quality electron beams to multi-GeV energies. Here we present an innovative hybrid staging approach, deploying electron beams generated in a laser-driven wakefield accelerator(LWFA) as drivers for a PWFA, integrated in a particularly compact setup. This scenario exploits the capability of LWFAs to deliver shortest, high peak-current electron bunches [1] with the prospects for high-quality witness beam generation in PWFAs [2]. The feasibility of the concept is presented through exemplary particle-in-cell simulations, before describing experimental results from extensive campaigns performed at high-power laser facilities; ATLAS (LMU, Munich), SALLE-JAUNE (LOA, Paris) and DRACO (HZDR, Dresden). Using few-cycle optical probing we captured clear images of beam-driven plasma waves in a dedicated plasma stage, allowing us to identify a non-linear plasma-wave excitation regime. Trailing the plasma waves, the impact of ion motion to the transverse modulation of the plasma density was observed over many picoseconds [3]. Furthermore, we demonstrate for the first time the acceleration of distinct witness beams in such LWFA-driven PWFA (LPWFA) setup, showcasing an accelerating gradient on the order of 100 GV/m. These milestones pave the way towards compact sources of energetic ultra-high brightness electron beams as well as a miniature model for large scale PWFA facilities.
- Published
- 2019
42. Calibration and cross-laboratory implementation of scintillating screens for electron bunch charge determination
- Author
-
Kurz, T., Couperus, J. P., Krämer, J. M., Ding, H., Kuschel, S., Köhler, A., Zarini, O., Hollatz, D., Schinkel, D., D'Arcy, R., Schwinkendorf, J. P., Irman, A., Schramm, U., and Karsch, S.
- Abstract
In this article we revise the calibration measurements of different scintillation screens commonly used for the detection of relativistic electrons, extending previous reference work towards higher charge density and new types of screens. Electron peak charge densities up to 10 nC/mm² were provided by focused picosecond-long electron beams delivered by the ELBE linear accelerator at the Helmholtz-Zentrum Dresden-Rossendorf. At low charge densities, a linear scintillation response was found, followed by the onset of saturation in the range of nC/mm². The absolute calibration factor (photons/sr/pC) in this linear regime was measured to be almost a factor of 2 lower than reported by Buck et al. retrospectively implying a higher charge in charge measurements performed with the old calibration. A good agreement was found with the results by Glinec et al.. Furthermore long-term irradiation tests with an integrated dose of approximately 50 nC/mm² indicate a significant decrease of the scintillation efficiency over time. Finally, in order to enable the transfer of the absolute calibration between laboratories, a new constant reference has been developed.
- Published
- 2018
43. Horizon 2020 EuPRAXIA design study
- Author
-
EuPRAXIA Collaboration, Walker, P. A., Alesini, P. D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Aschikhin, A., Assmann, R. W., Audet, T., Bacci, A., Barna, I. F., Beaton, A., Beck, A., Beluze, A., Bernhard, A., Bielawski, S., Bisesto, F. G., Boedewadt, J., Brandi, F., Bringer, O., Brinkmann, R., Bründermann, E., Büscher, M., Bussmann, M., Bussolino, G. C., Chance, A., Chanteloup, J. C., Chen, M., Chiadroni, E., Cianchi, A., Clarke, J., Cole, J., Couprie, M. E., Croia, M., Cros, B., Dale, J., Dattoli, G., Delerue, N., Delferriere, O., Delinikolas, P., Dias, J., Dorda, U., Ertel, K., Ferran Pousa, A., Ferrario, M., Filippi, F., Fils, J., Fiorito, R., Fonseca, R. A., Galimberti, M., Gallo, A., Garzella, D., Gastinel, P., Giove, D., Giribono, A., Gizzi, L. A., Grüner, F. J., Habib, A. F., Haefner, L. C., Heinemann, T., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Irman, A., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M. C., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Knetsch, A., Kocon, D., Koester, P., Kononenko, O., Korn, G., Kostyukov, I., Labate, L., Lechner, C., Leemans, W. P., Lehrach, A., Li, F. Y., Li, X., Libov, V., Lifschitz, A., Litvinenko, V., Lu, W., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marchetti, B., Marocchino, A., Martinez de la Ossa, A., Martins, J. L., Massimo, F., Mathieu, F., Maynard, G., Mehrling, T. J., Molodozhentsev, A. Y., Mosnier, A., Mostacci, A., Mueller, A. S., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Osterhoff, J., Papadopoulos, D., Patrizi, B., Pattathil, R., Petrillo, V., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Romeo, S., Rossi, A. R., Roussel, E., Sahai, A. A., Scherkl, P., Schramm, U., Schroeder, C. B., Schwindling, J., Scifo, J., Serafini, L., Sheng, Z. M., Silva, L. O., Silva, T., Simon, C., Sinha, U., Specka, A., Streeter, M. J. V., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G., Thomas, A. G. R., Thompson, N., Toci, G., Tomassini, P., Vaccarezza, C., Vannini, M., Vieira, J. M., Villa, F., Wahlström, C-G., Walczak, R., Weikum, M. K., Welsch, C. P., Wiemann, C., Wolfenden, J., Xia, G., Yabashi, M., Yu, L., Zhu, J., Zigler, A., Nguyen, F., and Dattoli, G.
- Subjects
History ,Technology ,high-energy physics (HEP) ,compact X-ray sources ,01 natural sciences ,7. Clean energy ,Education ,accelerator facility ,Acceleration ,Physics and Astronomy (all) ,multi-GeV electron beams ,0103 physical sciences ,ddc:530 ,010306 general physics ,QC ,plasma ,compact accelerators ,Physics ,QC717 ,Plasma acceleration ,Settore FIS/01 ,Horizon (archaeology) ,010308 nuclear & particles physics ,light sources ,Settore FIS/07 ,Mechanics ,Computer Science Applications ,Design study ,Plasma Research Accelerator ,plasma accelerator ,Physics::Accelerator Physics ,ddc:600 - Abstract
The Horizon 2020 Project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") is preparing a conceptual design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020. © Published under licence by IOP Publishing Ltd.
- Published
- 2017
44. Calibration of scintillation screens for ultrashort electron bunch detection
- Author
-
Kurz, T., Couperus, J. P., Krämer, J. M., Ding, H., Kuschel, S., Köhler, A., Zarini, O., Hollatz, D., Schinkel, D., D‘Arcy, R., Schwinkendorf, J. P., Irman, A., Schramm, U., and Karsch, S.
- Abstract
This work reports on the calibration of scintillating screens for diagnoses of high-charge density electron beams origination from laser plasma accelerators (LPA). Our setup at the conventional ELBE accelerator is cross-calibrated with an integrating current transformer (ICT) and allows for calibration over a large charge density range, thus enabling the study both the linear and non-linear scintillating screen response, as well as long-term stability tests of the screens. In contrast to previous works, the calibration presented here is performed under conditions with a close mimic to real experimental LPA conditions. A linear response of the scintillator to the applied electron charge was found, followed by a saturation process starting in the range of nC/mm^2. Mimicking a 1-Hz LPA, long–term stability tests showed a significant decrease of the scintillation efficiency over time. Finally, we present a method where a LED-based constant light source provides an easy method for absolute calibration of charge diagnostic systems at LPAs. This method eliminates many potential error sources existing in currently used methods and enables the transfer of absolute charge calibrations between laboratories.
- Published
- 2017
45. Horizon 2020 EuPRAXIA design study
- Author
-
Walker, P. A., Alesini, P. D., Alexandrova, A. S., Anania, M. P., Andreev, N. E., Andriyash, I., Aschikhin, A., Assmann, R. W., Audet, T., Bacci, A., Barna, I. F., Beaton, A., Beck, A., Beluze, A., Bernhard, A., Bielawski, S., Bisesto, F. G., Boedewadt, J., Brandi, F., Bringer, O., Brinkmann, R., Bründermann, E., Büscher, M., Bussmann, M., Bussolino, G. C., Chance, A., Chanteloup, J. C., Chen, M., Chiadroni, E., Cianchi, A., Clarke, J., Cole, J., Couprie, M. E., Croia, M., Cros, B., Dale, J., Dattoli, G., Delerue, N., Delferriere, O., Delinikolas, P., Dias, J., Dorda, U., Ertel, K., Pousa, A. F., Ferrario, M., Filippi, F., Fils, J., Fiorito, R., Fonseca, R. A., Galimberti, M., Gallo, A., Garzella, D., Gastinel, P., Giove, D., Giribono, A., Gizzi, L. A., Grüner, F. J., Habib, A. F., Haefner, L. C., Heinemann, T., Hidding, B., Holzer, B. J., Hooker, S. M., Hosokai, T., Irman, A., Jaroszynski, D. A., Jaster-Merz, S., Joshi, C., Kaluza, M. C., Kando, M., Karger, O. S., Karsch, S., Khazanov, E., Khikhlukha, D., Knetsch, A., Kocon, D., Koester, P., Kononenko, O., Korn, G., Kostyukov, I., Labate, L., Lechner, C., Leemans, W. P., Lehrach, A., Li, F. Y., Li, X., Libov, V., Lifschitz, A., Litvinenko, V., Lu, W., Maier, A. R., Malka, V., Manahan, G. G., Mangles, S. P. D., Marchetti, B., Marocchino, A., Ossa, A. M. D. L., Martins, J. L., Massimo, F., Mathieu, F., Maynard, G., Mehrling, T. J., Molodozhentsev, A. Y., Mosnier, A., Mostacci, A., Mueller, A. S., Najmudin, Z., Nghiem, P. A. P., Nguyen, F., Niknejadi, P., Osterhoff, J., Papadopoulos, D., Patrizi, B., Pattathil, R., Petrillo, V., Pocsai, M. A., Poder, K., Pompili, R., Pribyl, L., Pugacheva, D., Romeo, S., Rossi, A. R., Roussel, E., Sahai, A. A., Scherkl, P., Schramm, U., Schroeder, C. B., Schwindling, J., Scifo, J., Serafini, L., Sheng, Z. M., Silva, L. O., Silva, T., Simon, C., Sinha, U., Specka, A., Streeter, M. J. V., Svystun, E. N., Symes, D., Szwaj, C., Tauscher, G., Thomas, A. G. R., Thompson, N., Toci, G., Tomassini, P., Vaccarezza, C., Vannini, M., Vieira, J. M., Villa, F., Wahlström, C.-G., Walczak, R., Weikum, M. K., Welsch, C. P., Wiemann, C., Wolfenden, J., Xia, G., Yabashi, M., Yu, L., and Zigler, J. Z. A.
- Subjects
Plasma accelerator ,Physics::Accelerator Physics - Abstract
The Horizon 2020 Project EuPRAXIA ("European Plasma Research Accelerator with eXcellence In Applications") is preparing a conceptual design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020.
- Published
- 2017
46. Absolute charge calibration and degeneration studies of various scintillation screens used in laser Wakefield acceleration
- Author
-
Kurz, T., Couperus, J. P., Krämer, J. M., Ding, H., Kuschel, S., Hollatz, D., Köhler, A., Zarini, O., D’Arcy, R., Schinkel, D., Schwinkendorf, J. P., Zepf, M., Osterhoff, J., Irman, A., Schramm, U., and Karsch, S.
- Subjects
Physics::Instrumentation and Detectors ,Physics::Accelerator Physics - Abstract
Scintillation screens are generally used as the electron beam diagnostics in Laser Wakefield Accelerators. We present an absolute charge calibration of the electron detector i.e. a scintillating screen with a layer of powdered rare earth phosphor (Gd2O2S:Tb). The calibration was designed to investigate the absolute light/charge–ratio and saturation effects of various screens used in current laser–electron accelerators. The scintillation screens show a linear photon response to the applied charge up to an upper boundary caused by saturation effects. We also report about degeneration studies of some of these screens which were excited with a similar condition compared to Wakefield experiments.
- Published
- 2017
47. GeV-scale electron acceleration in a gas-filled capillary discharge waveguide
- Author
-
Karsch, S, Osterhoff, J, Popp, A, Rowlands-Rees, TP, Major, Z, Fuchs, M, Marx, B, Hoerlein, R, Schmid, K, Veisz, L, Becker, S, Schramm, U, Hidding, B, Pretzler, G, Habs, D, Gruener, F, Krausz, F, Hooker, SM, and Gesellschaft, Deutsche Physikalische
- Subjects
42.65.Jx ,pacs:41.75.Jv ,52.38.Kd ,Physics ,Physics::Accelerator Physics ,Atomic and laser physics - Abstract
We report experimental results on laser-driven electron acceleration with low divergence. The electron beam was generated by focussing 750 mJ, 42 fs laser pulses into a gas-filled capillary discharge waveguide at electron densities in the range between 1018 and 1019cm-3. Quasi-monoenergetic electron bunches with energies as high as 500MeV have been detected, with features reaching up to 1 GeV, albeit with large shot-to-shot fluctuations. A more stable regime with higher bunch charge (20-45 pC) and less energy (200-300 MeV) could also be observed. The beam divergence and the pointing stability are around or below 1 mrad and 8 mrad, respectively. These findings are consistent with self-injection of electrons into a breaking plasma wave. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
- Published
- 2016
48. Using the third state of matter: high harmonic generation from liquid targets
- Author
-
Heissler, P., Lugovoy, E., Hoerlein, R., Lutz Waldecker, Wenz, J., Heigoldt, M., Khrennikov, K., Karsch, S., Krausz, F., Abel, B., and Tsakiris, G. D.
- Published
- 2014
49. Development of a Joule-class Yb:YAG amplifier and its implementation in a CPA system generating 1TW pulses
- Author
-
Wandt, C., Klingebiel, S., Keppler, S., Hornung, M., Loeser, M., Siebold, M., Skrobol, C., Kessel, A., Trushin, S. A., Major, Z., Hein, J., Kaluza, M. C., Krausz, F., and Karsch, S.
- Abstract
In this paper the development and implementation of a novel amplifier setup as an additional stage for the CPA pump laser of the Petawatt Field Synthesizer, currently developed at the Max-Planck-Institute of Quantum Optics, is resented. This amplifier design comprises 20 relay-imaged passes through the active medium which are arranged in rotational symmetry. As the gain material, an in-house-developed Yb:YAG active-mirror is used. With this setup, stretched 4 ns seed pulses are amplified to output energies exceeding 1 J with repetition rates of up to 2 Hz. Furthermore, a spectral bandwidth of 3.5nm (FWHM) is maintained during amplification and the compression of the pulses down to their Fourier-limit of 740 fs is achieved. To the best of our knowledge, this is the first demonstration of 1TW pulses generated via CPA in diode-pumped Yb:YAG.
- Published
- 2014
50. A Quantal, Partially Ordered Electron Structure as a Basis for a \gamma Free Electron Laser (\gamma-FEL)
- Author
-
Habs, D., Günther, M. M., Karsch, S., Thirolf, P. G., and Jentschel, M.
- Subjects
Astrophysics::High Energy Astrophysical Phenomena ,Physics::Accelerator Physics ,Physics - Accelerator Physics ,Physics - Plasma Physics - Abstract
When a rather cold electron bunch is transported during laser bubble acceleration in a strongly focusing plasma channel with typical forces of 100 GeV/m, it will form partially ordered long electron cylinders due to the relativistically longitudinal reduced repulsion between electrons, resulting in a long-range pair correlation function, when reaching energies in the laboratory above 0.5 GeV. During Compton back-scattering with a second laser, injected opposite to the electron bunch, the electron bunch will be further modulated with micro bunches and due to its ordered structure will reflect coherently, M\"ossbauer-like, resulting in a \gamma free electron laser (\gamma-FEL). Increasing the relativistic \gamma factor, the quantal regime becomes more dominant. We discuss the scaling laws with \gamma.
- Published
- 2012
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.