20 results on '"Kirchoff, Katie"'
Search Results
2. Clinical phenotypes and outcomes in children with multisystem inflammatory syndrome across SARS-CoV-2 variant eras: a multinational study from the 4CE consortium
- Author
-
Aaron, James R., Adam, Atif, Agapito, Giuseppe, Albayrak, Adem, Albi, Giuseppe, Alessiani, Mario, Alloni, Anna, Amendola, Danilo F., Angoulvant, François, Anthony, Li LLJ., Aronow, Bruce J., Ashraf, Fatima, Atz, Andrew, Avillach, Paul, Panickan, Vidul Ayakulangara, Azevedo, Paula S., Badenes, Rafael, Balshi, James, Batugo, Ashley, Beaulieu-Jones, Brendin R., Beaulieu-Jones, Brett K., Bell, Douglas S., Bellasi, Antonio, Bellazzi, Riccardo, Benoit, Vincent, Beraghi, Michele, Bernal-Sobrino, José Luis, Bernaux, Mélodie, Bey, Romain, Bhatnagar, Surbhi, Blanco-Martínez, Alvar, Boeker, Martin, Bonzel, Clara-Lea, Booth, John, Bosari, Silvano, Bourgeois, Florence T., Bradford, Robert L., Brat, Gabriel A., Bréant, Stéphane, Brown, Nicholas W., Bruno, Raffaele, Bryant, William A., Bucalo, Mauro, Bucholz, Emily, Burgun, Anita, Cai, Tianxi, Cannataro, Mario, Carmona, Aldo, Cattelan, Anna Maria, Caucheteux, Charlotte, Champ, Julien, Chen, Jin, Chen, Krista Y., Chiovato, Luca, Chiudinelli, Lorenzo, Cho, Kelly, Cimino, James J., Colicchio, Tiago K., Cormont, Sylvie, Cossin, Sébastien, Craig, Jean B., Cruz-Bermúdez, Juan Luis, Cruz-Rojo, Jaime, Dagliati, Arianna, Daniar, Mohamad, Daniel, Christel, Das, Priyam, Devkota, Batsal, Dionne, Audrey, Duan, Rui, Dubiel, Julien, DuVall, Scott L., Esteve, Loic, Estiri, Hossein, Fan, Shirley, Follett, Robert W., Ganslandt, Thomas, García-Barrio, Noelia, Garmire, Lana X., Gehlenborg, Nils, Getzen, Emily J., Geva, Alon, Goh, Rachel SJ., González, Tomás González, Gradinger, Tobias, Gramfort, Alexandre, Griffier, Romain, Griffon, Nicolas, Grisel, Olivier, Gutiérrez-Sacristán, Alba, Guzzi, Pietro H., Han, Larry, Hanauer, David A., Haverkamp, Christian, Hazard, Derek Y., He, Bing, Henderson, Darren W., Hilka, Martin, Ho, Yuk-Lam, Holmes, John H., Honerlaw, Jacqueline P., Hong, Chuan, Huling, Kenneth M., Hutch, Meghan R., Issitt, Richard W., Jannot, Anne Sophie, Jouhet, Vianney, Kainth, Mundeep K., Kate, Kernan F., Kavuluru, Ramakanth, Keller, Mark S., Kennedy, Chris J., Kernan, Kate F., Key, Daniel A., Kirchoff, Katie, Klann, Jeffrey G., Kohane, Isaac S., Krantz, Ian D., Kraska, Detlef, Krishnamurthy, Ashok K., L'Yi, Sehi, Leblanc, Judith, Lemaitre, Guillaume, Lenert, Leslie, Leprovost, Damien, Liu, Molei, Will Loh, Ne Hooi, Long, Qi, Lozano-Zahonero, Sara, Luo, Yuan, Lynch, Kristine E., Mahmood, Sadiqa, Maidlow, Sarah E., Makoudjou, Adeline, Makwana, Simran, Malovini, Alberto, Mandl, Kenneth D., Mao, Chengsheng, Maram, Anupama, Maripuri, Monika, Martel, Patricia, Martins, Marcelo R., Marwaha, Jayson S., Masino, Aaron J., Mazzitelli, Maria, Mazzotti, Diego R., Mensch, Arthur, Milano, Marianna, Minicucci, Marcos F., Moal, Bertrand, Ahooyi, Taha Mohseni, Moore, Jason H., Moraleda, Cinta, Morris, Jeffrey S., Morris, Michele, Moshal, Karyn L., Mousavi, Sajad, Mowery, Danielle L., Murad, Douglas A., Murphy, Shawn N., Naughton, Thomas P., Breda Neto, Carlos Tadeu, Neuraz, Antoine, Newburger, Jane, Ngiam, Kee Yuan, Njoroge, Wanjiku FM., Norman, James B., Obeid, Jihad, Okoshi, Marina P., Olson, Karen L., Omenn, Gilbert S., Orlova, Nina, Ostasiewski, Brian D., Palmer, Nathan P., Paris, Nicolas, Patel, Lav P., Pedrera-Jiménez, Miguel, Pfaff, Ashley C., Pfaff, Emily R., Pillion, Danielle, Pizzimenti, Sara, Priya, Tanu, Prokosch, Hans U., Prudente, Robson A., Prunotto, Andrea, Quirós-González, Víctor, Ramoni, Rachel B., Raskin, Maryna, Rieg, Siegbert, Roig-Domínguez, Gustavo, Rojo, Pablo, Romero-Garcia, Nekane, Rubio-Mayo, Paula, Sacchi, Paolo, Sáez, Carlos, Salamanca, Elisa, Samayamuthu, Malarkodi Jebathilagam, Sanchez-Pinto, L. Nelson, Sandrin, Arnaud, Santhanam, Nandhini, Santos, Janaina C.C., Sanz Vidorreta, Fernando J., Savino, Maria, Schriver, Emily R., Schubert, Petra, Schuettler, Juergen, Scudeller, Luigia, Sebire, Neil J., Serrano-Balazote, Pablo, Serre, Patricia, Serret-Larmande, Arnaud, Shah, Mohsin A., Hossein Abad, Zahra Shakeri, Silvio, Domenick, Sliz, Piotr, Son, Jiyeon, Sonday, Charles, South, Andrew M., Sperotto, Francesca, Spiridou, Anastasia, Strasser, Zachary H., Tan, Amelia LM., Tan, Bryce W.Q., Tan, Byorn W.L., Tanni, Suzana E., Taylor, Deanne M., Terriza-Torres, Ana I., Tibollo, Valentina, Tippmann, Patric, Toh, Emma MS., Torti, Carlo, Trecarichi, Enrico M., Vallejos, Andrew K., Varoquaux, Gael, Vella, Margaret E., Verdy, Guillaume, Vie, Jill-Jênn, Visweswaran, Shyam, Vitacca, Michele, Wagholikar, Kavishwar B., Waitman, Lemuel R., Wang, Xuan, Wassermann, Demian, Weber, Griffin M., Wolkewitz, Martin, Wong, Scott, Xia, Zongqi, Xiong, Xin, Ye, Ye, Yehya, Nadir, Yuan, William, Zachariasse, Joany M., Zahner, Janet J., Zambelli, Alberto, Zhang, Harrison G., Zöller, Daniela, Zuccaro, Valentina, Zucco, Chiara, Li, Xiudi, Rofeberg, Valerie N., Elias, Matthew D., Laird-Gion, Jessica, and Newburger, Jane W.
- Published
- 2023
- Full Text
- View/download PDF
3. Characterization of long COVID temporal sub-phenotypes by distributed representation learning from electronic health record data: a cohort study
- Author
-
Aaron, James R., Agapito, Giuseppe, Albayrak, Adem, Albi, Giuseppe, Alessiani, Mario, Alloni, Anna, Amendola, Danilo F., François Angoulvant, Anthony, Li L.L.J., Aronow, Bruce J., Ashraf, Fatima, Atz, Andrew, Avillach, Paul, Azevedo, Paula S., Balshi, James, Beaulieu-Jones, Brett K., Bell, Douglas S., Bellasi, Antonio, Bellazzi, Riccardo, Benoit, Vincent, Beraghi, Michele, Bernal-Sobrino, José Luis, Bernaux, Mélodie, Bey, Romain, Bhatnagar, Surbhi, Blanco-Martínez, Alvar, Bonzel, Clara-Lea, Booth, John, Bosari, Silvano, Bourgeois, Florence T., Bradford, Robert L., Brat, Gabriel A., Bréant, Stéphane, Brown, Nicholas W., Bruno, Raffaele, Bryant, William A., Bucalo, Mauro, Bucholz, Emily, Burgun, Anita, Cai, Tianxi, Cannataro, Mario, Carmona, Aldo, Caucheteux, Charlotte, Champ, Julien, Chen, Jin, Chen, Krista Y., Chiovato, Luca, Chiudinelli, Lorenzo, Cho, Kelly, Cimino, James J., Colicchio, Tiago K., Cormont, Sylvie, Cossin, Sébastien, Craig, Jean B., Cruz-Bermúdez, Juan Luis, Cruz-Rojo, Jaime, Dagliati, Arianna, Daniar, Mohamad, Daniel, Christel, Das, Priyam, Devkota, Batsal, Dionne, Audrey, Duan, Rui, Dubiel, Julien, DuVall, Scott L., Esteve, Loic, Estiri, Hossein, Fan, Shirley, Follett, Robert W., Ganslandt, Thomas, Barrio, Noelia García, Garmire, Lana X., Gehlenborg, Nils, Getzen, Emily J., Geva, Alon, Gradinger, Tobias, Gramfort, Alexandre, Griffier, Romain, Griffon, Nicolas, Grisel, Olivier, Gutiérrez-Sacristán, Alba, Han, Larry, Hanauer, David A., Haverkamp, Christian, Hazard, Derek Y., He, Bing, Henderson, Darren W., Hilka, Martin, Ho, Yuk-Lam, Holmes, John H., Hong, Chuan, Huling, Kenneth M., Hutch, Meghan R., Issitt, Richard W., Jannot, Anne Sophie, Jouhet, Vianney, Kavuluru, Ramakanth, Keller, Mark S., Kennedy, Chris J., Key, Daniel A., Kirchoff, Katie, Klann, Jeffrey G., Kohane, Isaac S., Krantz, Ian D., Kraska, Detlef, Krishnamurthy, Ashok K., L'Yi, Sehi, Le, Trang T., Leblanc, Judith, Lemaitre, Guillaume, Lenert, Leslie, Leprovost, Damien, Liu, Molei, Will Loh, Ne Hooi, Long, Qi, Lozano-Zahonero, Sara, Luo, Yuan, Lynch, Kristine E., Mahmood, Sadiqa, Maidlow, Sarah E., Makoudjou, Adeline, Malovini, Alberto, Mandl, Kenneth D., Mao, Chengsheng, Maram, Anupama, Martel, Patricia, Martins, Marcelo R., Marwaha, Jayson S., Masino, Aaron J., Mazzitelli, Maria, Mensch, Arthur, Milano, Marianna, Minicucci, Marcos F., Moal, Bertrand, Ahooyi, Taha Mohseni, Moore, Jason H., Moraleda, Cinta, Morris, Jeffrey S., Morris, Michele, Moshal, Karyn L., Mousavi, Sajad, Mowery, Danielle L., Murad, Douglas A., Murphy, Shawn N., Naughton, Thomas P., Breda Neto, Carlos Tadeu, Neuraz, Antoine, Newburger, Jane, Ngiam, Kee Yuan, Njoroge, Wanjiku F.M., Norman, James B., Obeid, Jihad, Okoshi, Marina P., Olson, Karen L., Omenn, Gilbert S., Orlova, Nina, Ostasiewski, Brian D., Palmer, Nathan P., Paris, Nicolas, Patel, Lav P., Pedrera-Jiménez, Miguel, Pfaff, Emily R., Pfaff, Ashley C., Pillion, Danielle, Pizzimenti, Sara, Prokosch, Hans U., Prudente, Robson A., Prunotto, Andrea, Quirós-González, Víctor, Ramoni, Rachel B., Raskin, Maryna, Rieg, Siegbert, Roig-Domínguez, Gustavo, Rojo, Pablo, Rubio-Mayo, Paula, Sacchi, Paolo, Sáez, Carlos, Salamanca, Elisa, Samayamuthu, Malarkodi Jebathilagam, Sanchez-Pinto, L. Nelson, Sandrin, Arnaud, Santhanam, Nandhini, Santos, Janaina C.C., Sanz Vidorreta, Fernando J., Savino, Maria, Schriver, Emily R., Schubert, Petra, Schuettler, Juergen, Scudeller, Luigia, Sebire, Neil J., Serrano-Balazote, Pablo, Serre, Patricia, Serret-Larmande, Arnaud, Shah, Mohsin, Hossein Abad, Zahra Shakeri, Silvio, Domenick, Sliz, Piotr, Son, Jiyeon, Sonday, Charles, South, Andrew M., Spiridou, Anastasia, Strasser, Zachary H., Tan, Amelia L.M., Tan, Bryce W.Q., Tan, Byorn W.L., Tanni, Suzana E., Taylor, Deanne M., Terriza-Torres, Ana I., Tibollo, Valentina, Tippmann, Patric, Toh, Emma M.S., Torti, Carlo, Trecarichi, Enrico M., Tseng, Yi-Ju, Vallejos, Andrew K., Varoquaux, Gael, Vella, Margaret E., Verdy, Guillaume, Vie, Jill-Jênn, Visweswaran, Shyam, Vitacca, Michele, Wagholikar, Kavishwar B., Waitman, Lemuel R., Wang, Xuan, Wassermann, Demian, Weber, Griffin M., Wolkewitz, Martin, Wong, Scott, Xia, Zongqi, Xiong, Xin, Ye, Ye, Yehya, Nadir, Yuan, William, Zambelli, Alberto, Zhang, Harrison G., Zo¨ller, Daniela, Zuccaro, Valentina, Zucco, Chiara, Mesa, Rebecca, and Verdy, Guillame
- Published
- 2023
- Full Text
- View/download PDF
4. Driving Pressure, Elastance, and Outcomes in a Real-World Setting: A Bi-Center Analysis of Electronic Health Record Data
- Author
-
Goodwin, Andrew J., Brinton, Daniel L., Terry, Charles, Carter, George, Files, D. Clark, Kirchoff, Katie, Ford, Dee W., and Simpson, Annie N.
- Published
- 2023
- Full Text
- View/download PDF
5. Elevated Driving Pressure and Elastance Does Not Increase In-Hospital Mortality Among Obese and Severely Obese Patients With Ventilator Dependent Respiratory Failure
- Author
-
Terry, Charles, Brinton, Daniel, Simpson, Annie N., Kirchoff, Katie, Files, D. Clark, Carter, George, Ford, Dee W., and Goodwin, Andrew J.
- Published
- 2022
- Full Text
- View/download PDF
6. Establishing an infrastructure to optimize the integration of genomics into research: Results from a precision health needs assessment.
- Author
-
Allen, Caitlin G, Bouchie, Gwendolyn, Judge, Daniel P, Coen, Emma, English, Sarah, Norman, Samantha, Kirchoff, Katie, Ramos, Paula S, Hirschhorn, Julie, Lenert, Leslie, and McMahon, Lori L
- Abstract
Researchers across the translational research continuum have emphasized the importance of integrating genomics into their research program. To date capacity and resources for genomics research have been limited; however, a recent population-wide genomic screening initiative launched at the Medical University of South Carolina in partnership with Helix has rapidly advanced the need to develop appropriate infrastructure for genomics research at our institution. We conducted a survey with researchers from across our institution (n = 36) to assess current knowledge about genomics health, barriers, and facilitators to uptake, and next steps to support translational research using genomics. We also completed 30-minute qualitative interviews with providers and researchers from diverse specialties (n = 8). Quantitative data were analyzed using descriptive analyses. A rapid assessment process was used to develop a preliminary understanding of each interviewee's perspective. These interviews were transcribed and coded to extract themes. The codes included types of research, alignment with precision health, opportunities to incorporate precision health, examples of researchers in the field, barriers, and facilitators to uptake, educational activity suggestions, questions to be answered, and other observations. Themes from the surveys and interviews inform implementation strategies that are applicable not only to our institution, but also to other organizations interested in making genomic data available to researchers to support genomics-informed translational research. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
7. Developing and Validating Methods to Assemble Systemic Lupus Erythematosus Births in the Electronic Health Record
- Author
-
Barnado, April, Eudy, Amanda M., Blaske, Ashley, Wheless, Lee, Kirchoff, Katie, Oates, Jim C., and Clowse, Megan E. B.
- Published
- 2022
- Full Text
- View/download PDF
8. International electronic health record-derived COVID-19 clinical course profiles: the 4CE consortium
- Author
-
Brat, Gabriel A., Weber, Griffin M., Gehlenborg, Nils, Avillach, Paul, Palmer, Nathan P., Chiovato, Luca, Cimino, James, Waitman, Lemuel R., Omenn, Gilbert S., Malovini, Alberto, Moore, Jason H., Beaulieu-Jones, Brett K., Tibollo, Valentina, Murphy, Shawn N., Yi, Sehi L’, Keller, Mark S., Bellazzi, Riccardo, Hanauer, David A., Serret-Larmande, Arnaud, Gutierrez-Sacristan, Alba, Holmes, John J., Bell, Douglas S., Mandl, Kenneth D., Follett, Robert W., Klann, Jeffrey G., Murad, Douglas A., Scudeller, Luigia, Bucalo, Mauro, Kirchoff, Katie, Craig, Jean, Obeid, Jihad, Jouhet, Vianney, Griffier, Romain, Cossin, Sebastien, Moal, Bertrand, Patel, Lav P., Bellasi, Antonio, Prokosch, Hans U., Kraska, Detlef, Sliz, Piotr, Tan, Amelia L. M., Ngiam, Kee Yuan, Zambelli, Alberto, Mowery, Danielle L., Schiver, Emily, Devkota, Batsal, Bradford, Robert L., Daniar, Mohamad, Daniel, Christel, Benoit, Vincent, Bey, Romain, Paris, Nicolas, Serre, Patricia, Orlova, Nina, Dubiel, Julien, Hilka, Martin, Jannot, Anne Sophie, Breant, Stephane, Leblanc, Judith, Griffon, Nicolas, Burgun, Anita, Bernaux, Melodie, Sandrin, Arnaud, Salamanca, Elisa, Cormont, Sylvie, Ganslandt, Thomas, Gradinger, Tobias, Champ, Julien, Boeker, Martin, Martel, Patricia, Esteve, Loic, Gramfort, Alexandre, Grisel, Olivier, Leprovost, Damien, Moreau, Thomas, Varoquaux, Gael, Vie, Jill-Jênn, Wassermann, Demian, Mensch, Arthur, Caucheteux, Charlotte, Haverkamp, Christian, Lemaitre, Guillaume, Bosari, Silvano, Krantz, Ian D., South, Andrew, Cai, Tianxi, and Kohane, Isaac S.
- Published
- 2020
- Full Text
- View/download PDF
9. Implications of the accuracy of diagnostic algorithms for systemic lupus on our understanding of racial disparities in pregnancy outcomes.
- Author
-
Clowse, Megan E B, Oates, James, Barnado, April, Kirchoff, Katie, Blaske, Ashley, Sheikh, Saira Z, Crofford, Leslie J, and Eudy, Amanda M
- Subjects
SYSTEMIC lupus erythematosus diagnosis ,PSYCHOLOGY of Black people ,NOSOLOGY ,RACE ,ACQUISITION of data ,PREGNANCY outcomes ,COMPARATIVE studies ,PSYCHOLOGY of women ,MEDICAL records ,DESCRIPTIVE statistics ,RESEARCH funding ,HEALTH equity ,WHITE people ,ELECTRONIC health records ,ALGORITHMS ,PREGNANCY - Abstract
Objective Disparities in pregnancy outcomes among women with SLE remain understudied, with few available racially diverse datasets. We sought to identify disparities between Black and White women in pregnancy outcomes within academic institutions in the United States. Methods Using the Common Data Model electronic medical record (EMR)-based datasets within the Carolinas Collaborative, we identified women with pregnancy delivery data (2014–2019) and ≥1 SLE International Classification of Diseases 9 or 10 code (ICD9/10) code. From this dataset, we identified four cohorts of SLE pregnancies, three based on EMR-based algorithms and one confirmed with chart review. We compared the pregnancy outcomes identified in each of these cohorts for Black and White women. Results Of 172 pregnancies in women with ≥1 SLE ICD9/10 code, 49% had confirmed SLE. Adverse pregnancy outcomes occurred in 40% of pregnancies in women with ≥1 ICD9/10 SLE code and 52% of pregnancies with confirmed SLE. SLE was frequently over-diagnosed in women who were White, resulting in 40–75% lower rates of adverse pregnancy outcomes in EMR-derived vs confirmed SLE cohorts. Over-diagnosis was less common for Black women with pregnancy outcomes 12–20% lower in EMR-derived vs confirmed SLE cohorts. Black women had higher rates of adverse pregnancy outcomes than White women in the EMR-derived, but not the confirmed cohorts. Conclusion EMR-derived cohorts of pregnancies in women who are Black, but not White, provided accurate estimations of pregnancy outcomes. The data from the confirmed SLE pregnancies suggest that all women with SLE, regardless of race, referred to academic centres remain at very high risk for adverse pregnancy outcome. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
10. International comparisons of laboratory values from the 4CE collaborative to predict COVID-19 mortality
- Author
-
Weber, Griffin, Hong, Chuan, Xia, Zongqi, Palmer, Nathan, Avillach, Paul, L’yi, Sehi, Keller, Mark, Murphy, Shawn, Gutiérrez-Sacristán, Alba, Bonzel, Clara-Lea, Serret-Larmande, Arnaud, Neuraz, Antoine, Omenn, Gilbert, Visweswaran, Shyam, Klann, Jeffrey, South, Andrew, Loh, Ne Hooi Will, Cannataro, Mario, Beaulieu-Jones, Brett, Bellazzi, Riccardo, Agapito, Giuseppe, Alessiani, Mario, Aronow, Bruce, Bell, Douglas, Benoit, Vincent, Bourgeois, Florence, Chiovato, Luca, Cho, Kelly, Dagliati, Arianna, Duvall, Scott, Barrio, Noelia García, Hanauer, David, Ho, Yuk-Lam, Holmes, John, Issitt, Richard, Liu, Molei, Luo, Yuan, Lynch, Kristine, Maidlow, Sarah, Malovini, Alberto, Mandl, Kenneth, Mao, Chengsheng, Matheny, Michael, Moore, Jason, Morris, Jeffrey, Morris, Michele, Mowery, Danielle, Ngiam, Kee Yuan, Patel, Lav, Pedrera Jiménez, Miguel, Ramoni, Rachel, Schriver, Emily, Schubert, Petra, Balazote, Pablo Serrano, Spiridou, Anastasia, Tan, Amelia, Tan, Byorn, Tibollo, Valentina, Torti, Carlo, Trecarichi, Enrico, Wang, Xuan, Aaron, James, Albayrak, Adem, Albi, Giuseppe, Balshi, James, Alloni, Anna, Amendola, Danilo, Angoulvant, François, Anthony, Li, Ashraf, Fatima, Atz, Andrew, Azevedo, Paula, Bellasi, Antonio, Beraghi, Michele, Bernal-Sobrino, José Luis, Bernaux, Mélodie, Bey, Romain, Bhatnagar, Surbhi, Blanco-Martínez, Alvar, Boeker, Martin, Booth, John, Bosari, Silvano, Bradford, Robert, Brat, Gabriel, Bréant, Stéphane, Brown, Nicholas, Bruno, Raffaele, Bryant, William, Bucalo, Mauro, Bucholz, Emily, Burgun, Anita, Cai, Tianxi, Carmona, Aldo, Caucheteux, Charlotte, Champ, Julien, Chen, Krista, Chen, Jin, Chiudinelli, Lorenzo, Cimino, James, Colicchio, Tiago, Cormont, Sylvie, Cossin, Sébastien, Craig, Jean, Cruz-Bermúdez, Juan Luis, Cruz-Rojo, Jaime, Daniar, Mohamad, Daniel, Christel, Das, Priyam, Devkota, Batsal, Garmire, Lana, Dionne, Audrey, Duan, Rui, Dubiel, Julien, Esteve, Loic, Estiri, Hossein, Fan, Shirley, Follett, Robert, Ganslandt, Thomas, García-Barrio, Noelia, Gehlenborg, Nils, Getzen, Emily, Geva, Alon, Gradinger, Tobias, Gramfort, Alexandre, Griffier, Romain, Griffon, Nicolas, Grisel, Olivier, Han, Larry, Haverkamp, Christian, Key, Daniel, Hazard, Derek, He, Bing, Henderson, Darren, Hilka, Martin, Huling, Kenneth, Hutch, Meghan, Jannot, Anne Sophie, Jouhet, Vianney, Kavuluru, Ramakanth, Kennedy, Chris, Kernan, Kate, Kirchoff, Katie, Kohane, Isaac, Krantz, Ian, Kraska, Detlef, Krishnamurthy, Ashok, Le, Trang, Leblanc, Judith, Lemaitre, Guillaume, Lenert, Leslie, Leprovost, Damien, Long, Qi, Lozano-Zahonero, Sara, Mahmood, Sadiqa, Makoudjou, Adeline, Maram, Anupama, Martel, Patricia, Martins, Marcelo, Marwaha, Jayson, Masino, Aaron, Mazzitelli, Maria, Mensch, Arthur, Milano, Marianna, Minicucci, Marcos, Moal, Bertrand, Ahooyi, Taha Mohseni, Moraleda, Cinta, Moshal, Karyn, Mousavi, Sajad, Murad, Douglas, Naughton, Thomas, Neto, Carlos Tadeu Breda, Newburger, Jane, Njoroge, Wanjiku, Norman, James, Obeid, Jihad, Okoshi, Marina, Olson, Karen, Orlova, Nina, Ostasiewski, Brian, Paris, Nicolas, Pedrera-Jiménez, Miguel, Pfaff, Ashley, Pfaff, Emily, Pillion, Danielle, Pizzimenti, Sara, Prokosch, Hans, Prudente, Robson, Prunotto, Andrea, Quirós-González, Víctor, Raskin, Maryna, Rieg, Siegbert, Roig-Domínguez, Gustavo, Rojo, Pablo, Rubio-Mayo, Paula, Sacchi, Paolo, Sáez, Carlos, Salamanca, Elisa, Samayamuthu, Malarkodi Jebathilagam, Sanchez-Pinto, L. Nelson, Sandrin, Arnaud, Santhanam, Nandhini, Santos, Janaina, Sanz Vidorreta, Fernando, Savino, Maria, Schuettler, Juergen, Scudeller, Luigia, Sebire, Neil, Serrano-Balazote, Pablo, Serre, Patricia, Shah, Mohsin, Abad, Zahra Shakeri Hossein, Silvio, Domenick, Sliz, Piotr, Son, Jiyeon, Sonday, Charles, Sperotto, Francesca, Strasser, Zachary, Tan, Bryce, Tanni, Suzana, Taylor, Deanne, Terriza-Torres, Ana, Tippmann, Patric, Toh, Emma, Tseng, Yi-Ju, Vallejos, Andrew, Varoquaux, Gael, Vella, Margaret, Verdy, Guillaume, Vie, Jill-Jênn, Vitacca, Michele, Wagholikar, Kavishwar, Waitman, Lemuel, Wassermann, Demian, Wolkewitz, Martin, Wong, Scott, Xiong, Xin, Ye, Ye, Yehya, Nadir, Yuan, William, Zambelli, Alberto, Zhang, Harrison, Zöller, Daniela, Zuccaro, Valentina, Zucco, Chiara, Harvard Medical School [Boston] (HMS), University of Pittsburgh (PITT), Pennsylvania Commonwealth System of Higher Education (PCSHE), Massachusetts General Hospital [Boston], Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité), Service d'informatique médicale et biostatistiques [CHU Necker], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Université Paris Cité (UPCité), Health data- and model- driven Knowledge Acquisition (HeKA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité)-École Pratique des Hautes Études (EPHE), University of Michigan [Ann Arbor], University of Michigan System, Wake Forest School of Medicine [Winston-Salem], Wake Forest Baptist Medical Center, National University Health System [Singapore] (NUHS), Università degli Studi 'Magna Graecia' di Catanzaro = University of Catanzaro (UMG), Università degli Studi di Pavia = University of Pavia (UNIPV), Istituti Clinici Scientifici Maugeri [Pavia] (IRCCS Pavia - ICS Maugeri), ASST Pavia, University of Cincinnati (UC), University of California [Los Angeles] (UCLA), University of California (UC), VA Boston Healthcare System, Hospital Universitario 12 de Octubre [Madrid], University of Pennsylvania, Great Ormond Street Hospital for Children [London] (GOSH), Harvard School of Public Health, Northwestern University [Chicago, Ill. USA], VA Salt Lake City Health Care System, Boston Children's Hospital, University of Kansas [Kansas City], and National University Hospital [Singapore] (NUH)
- Subjects
Health Information Management ,Medicine (miscellaneous) ,Health Informatics ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,Computer Science Applications - Abstract
Given the growing number of prediction algorithms developed to predict COVID-19 mortality, we evaluated the transportability of a mortality prediction algorithm using a multi-national network of healthcare systems. We predicted COVID-19 mortality using baseline commonly measured laboratory values and standard demographic and clinical covariates across healthcare systems, countries, and continents. Specifically, we trained a Cox regression model with nine measured laboratory test values, standard demographics at admission, and comorbidity burden pre-admission. These models were compared at site, country, and continent level. Of the 39,969 hospitalized patients with COVID-19 (68.6% male), 5717 (14.3%) died. In the Cox model, age, albumin, AST, creatine, CRP, and white blood cell count are most predictive of mortality. The baseline covariates are more predictive of mortality during the early days of COVID-19 hospitalization. Models trained at healthcare systems with larger cohort size largely retain good transportability performance when porting to different sites. The combination of routine laboratory test values at admission along with basic demographic features can predict mortality in patients hospitalized with COVID-19. Importantly, this potentially deployable model differs from prior work by demonstrating not only consistent performance but also reliable transportability across healthcare systems in the US and Europe, highlighting the generalizability of this model and the overall approach.
- Published
- 2022
- Full Text
- View/download PDF
11. Evolving phenotypes of non-hospitalized patients that indicate long COVID
- Author
-
ESTIRI, Hossein, Strasser, Zachary, Brat, Gabriel, Semenov, Yevgeniy, Patel, Chirag, Murphy, Shawn, Aaron, James, Agapito, Giuseppe, Albayrak, Adem, Alessiani, Mario, Amendola, Danilo, Anthony, Li, Aronow, Bruce, Ashraf, Fatima, Atz, Andrew, Avillach, Paul, Balshi, James, Beaulieu-Jones, Brett, Bell, Douglas, Bellasi, Antonio, Bellazzi, Riccardo, Benoit, Vincent, Beraghi, Michele, Sobrino, José Luis Bernal, Bernaux, Mélodie, Bey, Romain, Martínez, Alvar Blanco, Boeker, Martin, Bonzel, Clara-Lea, Booth, John, Bosari, Silvano, Bourgeois, Florence, Bradford, Robert, Bréant, Stéphane, Brown, Nicholas, Bryant, William, Bucalo, Mauro, Burgun, Anita, Cai, Tianxi, Cannataro, Mario, Carmona, Aldo, Caucheteux, Charlotte, Champ, Julien, Chen, Jin, Chen, Krista, Chiovato, Luca, Chiudinelli, Lorenzo, Cho, Kelly, Cimino, James, Colicchio, Tiago, Cormont, Sylvie, COSSIN, Sébastien, Craig, Jean, Bermúdez, Juan Luis Cruz, Rojo, Jaime Cruz, Dagliati, Arianna, Daniar, Mohamad, Daniel, Christel, Davoudi, Anahita, Devkota, Batsal, Dubiel, Julien, Esteve, Loic, Fan, Shirley, Follett, Robert, Gaiolla, Paula, Ganslandt, Thomas, Barrio, Noelia García, Garmire, Lana, Gehlenborg, Nils, GEVA, Alon, Gradinger, Tobias, Gramfort, Alexandre, Griffier, Romain, Griffon, Nicolas, Grisel, Olivier, Gutiérrez-Sacristán, Alba, Hanauer, David, Haverkamp, Christian, He, Bing, Henderson, Darren, Hilka, Martin, Holmes, John, Hong, Chuan, Horki, Petar, Huling, Kenneth, HUTCH, Meghan, Issitt, Richard, Jannot, Anne Sophie, Jouhet, Vianney, Keller, Mark, Kirchoff, Katie, Klann, Jeffrey, Kohane, Isaac, Krantz, Ian, Kraska, Detlef, Krishnamurthy, Ashok, L’Yi, Sehi, Le, Trang, Leblanc, Judith, Leite, Andressa, Lemaitre, Guillaume, Lenert, Leslie, Leprovost, Damien, Liu, Molei, LOH, Ne Hooi Will, Lozano-Zahonero, Sara, Luo, Yuan, Lynch, Kristine, Mahmood, Sadiqa, Maidlow, Sarah, Malovini, Alberto, Mandl, Kenneth, Mao, Chengsheng, Maram, Anupama, Martel, Patricia, Masino, Aaron, Mazzitelli, Maria, Mensch, Arthur, Milano, Marianna, Minicucci, Marcos, Moal, Bertrand, Moore, Jason, Moraleda, Cinta, Morris, Jeffrey, MORRIS, Michele, Moshal, Karyn, Mousavi, Sajad, Mowery, Danielle, Murad, Douglas, Naughton, Thomas, Neuraz, Antoine, Ngiam, Kee Yuan, Norman, James, Obeid, Jihad, Okoshi, Marina, Olson, Karen, Omenn, Gilbert, Orlova, Nina, Ostasiewski, Brian, Palmer, Nathan, Paris, Nicolas, Patel, Lav, Jimenez, Miguel Pedrera, Pfaff, Emily, Pillion, Danielle, Prokosch, Hans, Prudente, Robson, González, Víctor Quirós, Ramoni, Rachel, Raskin, Maryna, RIEG, Siegbert, Domínguez, Gustavo Roig, Rojo, Pablo, Sáez, Carlos, Salamanca, Elisa, Samayamuthu, Malarkodi, Sandrin, Arnaud, Santos, Janaina, Savino, Maria, SCHRIVER, Emily, Schubert, Petra, Schuettler, Juergen, Scudeller, Luigia, Sebire, Neil, Balazote, Pablo Serrano, Serre, Patricia, Serret-Larmande, Arnaud, Shakeri, Zahra, Silvio, Domenick, Sliz, Piotr, SON, Jiyeon, Sonday, Charles, South, Andrew, Spiridou, Anastasia, Tan, Amelia, Tan, Bryce, Tan, Byorn, Tanni, Suzana, Taylor, Deanne, Terriza Torres, Ana, Tibollo, Valentina, Tippmann, Patric, Torti, Carlo, Trecarichi, Enrico, Tseng, Yi-Ju, Vallejos, Andrew, Varoquaux, Gael, Vella, Margaret, Verdy, Guillaume, Vie, Jill-Jênn, Visweswaran, Shyam, Vitacca, Michele, Wagholikar, Kavishwar, Waitman, Lemuel, Wang, Xuan, Wassermann, Demian, Weber, Griffin, XIA, Zongqi, Yehya, Nadir, Yuan, William, Zambelli, Alberto, Zhang, Harrison, Zoeller, Daniel, Zucco, Chiara, Massachusetts General Hospital [Boston], Harvard Medical School [Boston] (HMS), Service d'informatique médicale et biostatistiques [CHU Necker], CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Health data- and model- driven Knowledge Acquisition (HeKA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université de Paris (UP)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université de Paris (UP), Université de Paris - UFR Médecine Paris Centre [Santé] (UP Médecine Paris Centre), Université de Paris (UP), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPC)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPC), Université Paris Cité - UFR Médecine Paris Centre [Santé] (UPC Médecine Paris Centre), Université Paris Cité (UPC), This work was supported by the National Human Genome Research Institute grant 3U01HG008685-05S2 and the National Library of Medicine grant T15LM007092., École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité), UFR Médecine [Santé] - Université Paris Cité (UFR Médecine UPCité), and Université Paris Cité (UPCité)
- Subjects
medicine.medical_specialty ,Neurological disorder ,Chest pain ,MESH: Phenotype ,Article ,03 medical and health sciences ,0302 clinical medicine ,Post-Acute COVID-19 Syndrome ,Diabetes mellitus ,Internal medicine ,Machine learning ,medicine ,Chronic fatigue syndrome ,Humans ,Electronic health records ,Post-acute sequelae of SARS-CoV-2 ,MESH: COVID-19 ,030304 developmental biology ,Retrospective Studies ,0303 health sciences ,MESH: Humans ,business.industry ,Medical record ,Type 2 Diabetes Mellitus ,COVID-19 ,Retrospective cohort study ,MESH: Retrospective Studies ,General Medicine ,medicine.disease ,3. Good health ,Dysgeusia ,Phenotypes ,Phenotype ,Medicine ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,medicine.symptom ,business ,030217 neurology & neurosurgery ,Research Article ,Cohort study - Abstract
Background For some SARS-CoV-2 survivors, recovery from the acute phase of the infection has been grueling with lingering effects. Many of the symptoms characterized as the post-acute sequelae of COVID-19 (PASC) could have multiple causes or are similarly seen in non-COVID patients. Accurate identification of PASC phenotypes will be important to guide future research and help the healthcare system focus its efforts and resources on adequately controlled age- and gender-specific sequelae of a COVID-19 infection. Methods In this retrospective electronic health record (EHR) cohort study, we applied a computational framework for knowledge discovery from clinical data, MLHO, to identify phenotypes that positively associate with a past positive reverse transcription-polymerase chain reaction (RT-PCR) test for COVID-19. We evaluated the post-test phenotypes in two temporal windows at 3–6 and 6–9 months after the test and by age and gender. Data from longitudinal diagnosis records stored in EHRs from Mass General Brigham in the Boston Metropolitan Area was used for the analyses. Statistical analyses were performed on data from March 2020 to June 2021. Study participants included over 96 thousand patients who had tested positive or negative for COVID-19 and were not hospitalized. Results We identified 33 phenotypes among different age/gender cohorts or time windows that were positively associated with past SARS-CoV-2 infection. All identified phenotypes were newly recorded in patients’ medical records 2 months or longer after a COVID-19 RT-PCR test in non-hospitalized patients regardless of the test result. Among these phenotypes, a new diagnosis record for anosmia and dysgeusia (OR 2.60, 95% CI [1.94–3.46]), alopecia (OR 3.09, 95% CI [2.53–3.76]), chest pain (OR 1.27, 95% CI [1.09–1.48]), chronic fatigue syndrome (OR 2.60, 95% CI [1.22–2.10]), shortness of breath (OR 1.41, 95% CI [1.22–1.64]), pneumonia (OR 1.66, 95% CI [1.28–2.16]), and type 2 diabetes mellitus (OR 1.41, 95% CI [1.22–1.64]) is one of the most significant indicators of a past COVID-19 infection. Additionally, more new phenotypes were found with increased confidence among the cohorts who were younger than 65. Conclusions The findings of this study confirm many of the post-COVID-19 symptoms and suggest that a variety of new diagnoses, including new diabetes mellitus and neurological disorder diagnoses, are more common among those with a history of COVID-19 than those without the infection. Additionally, more than 63% of PASC phenotypes were observed in patients under 65 years of age, pointing out the importance of vaccination to minimize the risk of debilitating post-acute sequelae of COVID-19 among younger adults.
- Published
- 2021
- Full Text
- View/download PDF
12. Authorship Correction: International Changes in COVID-19 Clinical Trajectories Across 315 Hospitals and 6 Countries: Retrospective Cohort Study
- Author
-
Weber, Griffin M, Zhang, Harrison G, L'Yi, Sehi, Bonzel, Clara-Lea, Hong, Chuan, Avillach, Paul, Gutiérrez-Sacristán, Alba, Palmer, Nathan P, Tan, Amelia Li Min, Wang, Xuan, Yuan, William, Gehlenborg, Nils, Alloni, Anna, Amendola, Danilo F, Bellasi, Antonio, Bellazzi, Riccardo, Beraghi, Michele, Bucalo, Mauro, Chiovato, Luca, Cho, Kelly, Dagliati, Arianna, Estiri, Hossein, Follett, Robert W, García Barrio, Noelia, Hanauer, David A, Henderson, Darren W, Ho, Yuk-Lam, Holmes, John H, Hutch, Meghan R, Kavuluru, Ramakanth, Kirchoff, Katie, Klann, Jeffrey G, Krishnamurthy, Ashok K, Le, Trang T, Liu, Molei, Loh, Ne Hooi Will, Lozano-Zahonero, Sara, Luo, Yuan, Maidlow, Sarah, Makoudjou, Adeline, Malovini, Alberto, Martins, Marcelo Roberto, Moal, Bertrand, Morris, Michele, Mowery, Danielle L, Murphy, Shawn N, Neuraz, Antoine, Ngiam, Kee Yuan, Okoshi, Marina P, Omenn, Gilbert S, Patel, Lav P, Pedrera Jiménez, Miguel, Prudente, Robson A, Samayamuthu, Malarkodi Jebathilagam, Sanz Vidorreta, Fernando J, Schriver, Emily R, Schubert, Petra, Serrano Balazote, Pablo, Tan, Byorn WL, Tanni, Suzana E, Tibollo, Valentina, Visweswaran, Shyam, Wagholikar, Kavishwar B, Xia, Zongqi, Zöller, Daniela, Kohane, Isaac S, Cai, Tianxi, South, Andrew M, and Brat, Gabriel A
- Subjects
Adult ,Male ,medicine.medical_specialty ,Coronavirus disease 2019 (COVID-19) ,business.industry ,SARS-CoV-2 ,COVID-19 ,Health Informatics ,Retrospective cohort study ,Middle Aged ,Corrigenda and Addenda ,Hospitals ,Hospitalization ,Family medicine ,medicine ,Humans ,Female ,business ,Pandemics ,Aged ,Retrospective Studies - Abstract
Many countries have experienced 2 predominant waves of COVID-19-related hospitalizations. Comparing the clinical trajectories of patients hospitalized in separate waves of the pandemic enables further understanding of the evolving epidemiology, pathophysiology, and health care dynamics of the COVID-19 pandemic.In this retrospective cohort study, we analyzed electronic health record (EHR) data from patients with SARS-CoV-2 infections hospitalized in participating health care systems representing 315 hospitals across 6 countries. We compared hospitalization rates, severe COVID-19 risk, and mean laboratory values between patients hospitalized during the first and second waves of the pandemic.Using a federated approach, each participating health care system extracted patient-level clinical data on their first and second wave cohorts and submitted aggregated data to the central site. Data quality control steps were adopted at the central site to correct for implausible values and harmonize units. Statistical analyses were performed by computing individual health care system effect sizes and synthesizing these using random effect meta-analyses to account for heterogeneity. We focused the laboratory analysis on C-reactive protein (CRP), ferritin, fibrinogen, procalcitonin, D-dimer, and creatinine based on their reported associations with severe COVID-19.Data were available for 79,613 patients, of which 32,467 were hospitalized in the first wave and 47,146 in the second wave. The prevalence of male patients and patients aged 50 to 69 years decreased significantly between the first and second waves. Patients hospitalized in the second wave had a 9.9% reduction in the risk of severe COVID-19 compared to patients hospitalized in the first wave (95% CI 8.5%-11.3%). Demographic subgroup analyses indicated that patients aged 26 to 49 years and 50 to 69 years; male and female patients; and black patients had significantly lower risk for severe disease in the second wave than in the first wave. At admission, the mean values of CRP were significantly lower in the second wave than in the first wave. On the seventh hospital day, the mean values of CRP, ferritin, fibrinogen, and procalcitonin were significantly lower in the second wave than in the first wave. In general, countries exhibited variable changes in laboratory testing rates from the first to the second wave. At admission, there was a significantly higher testing rate for D-dimer in France, Germany, and Spain.Patients hospitalized in the second wave were at significantly lower risk for severe COVID-19. This corresponded to mean laboratory values in the second wave that were more likely to be in typical physiological ranges on the seventh hospital day compared to the first wave. Our federated approach demonstrated the feasibility and power of harmonizing heterogeneous EHR data from multiple international health care systems to rapidly conduct large-scale studies to characterize how COVID-19 clinical trajectories evolve.
- Published
- 2021
13. VACtrac: enhancing access immunization registry data for population outreach using the Bulk Fast Healthcare Interoperable Resource (FHIR) protocol.
- Author
-
Lenert, Leslie, Jacobs, Jeff, Agnew, James, Ding, Wei, Kirchoff, Katie, Weatherston, Duncan, and Deans, Kenneth
- Abstract
COVID-19 vaccination uptake has been suboptimal, even in high-risk populations. New approaches are needed to bring vaccination data to the groups leading outreach efforts. This article describes work to make state-level vaccination data more accessible by extending the Bulk Fast Healthcare Interoperability Resource (FHIR) standard to better support the repeated retrieval of vaccination data for coordinated outreach efforts. We also describe a corresponding low-foot-print software for population outreach that automates repeated checks of state-level immunization data and prioritizes outreach by social determinants of health. Together this software offers an integrated approach to addressing vaccination gaps. Several extensions to the Bulk FHIR protocol were needed to support bulk query of immunization records. These are described in detail. The results of a pilot study, using the outreach tool to target a population of 1500 patients are also described. The results confirmed the limitations of current patient-by-patient approach for querying state immunizations systems for population data and the feasibility of a Bulk FHIR approach. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
14. Autumn in Rockford
- Author
-
Kirchoff, Katie
- Published
- 2004
15. International Analysis of Electronic Health Records of Children and Youth Hospitalized With COVID-19 Infection in 6 Countries
- Author
-
Bourgeois, Florence, Gutiérrez-Sacristán, Alba, Keller, Mark, Liu, Molei, Hong, Chuan, Bonzel, Clara-Lea, Tan, Amelia, Aronow, Bruce, Boeker, Martin, Booth, John, Cruz Rojo, Jaime, Devkota, Batsal, García Barrio, Noelia, Gehlenborg, Nils, Geva, Alon, Hanauer, David, Hutch, Meghan, Issitt, Richard, Klann, Jeffrey, Luo, Yuan, Mandl, Kenneth, Mao, Chengsheng, Moal, Bertrand, Moshal, Karyn, Murphy, Shawn, Neuraz, Antoine, Ngiam, Kee Yuan, Omenn, Gilbert, Patel, Lav, Jiménez, Miguel Pedrera, Sebire, Neil, Balazote, Pablo Serrano, Serret-Larmande, Arnaud, South, Andrew, Spiridou, Anastasia, Taylor, Deanne, Tippmann, Patric, Visweswaran, Shyam, Weber, Griffin, Kohane, Isaac, Cai, Tianxi, Avillach, Paul, Cruz-Rojo, Jaime, García-Barrio, Noelia, Pedrera-Jiménez, Miguel, Serrano-Balazote, Pablo, Aaron, James, Agapito, Giuseppe, Albayrak, Adem, Alessiani, Mario, Amendola, Danilo, Angoulvant, François, Anthony, Li Llj, Atz, Andrew, Balshi, James, Beaulieu-Jones, Brett, Bell, Douglas, Bellasi, Antonio, Bellazzi, Riccardo, Benoit, Vincent, Beraghi, Michele, Bernal Sobrino, José Luis, Bernaux, Mélodie, Bey, Romain, Blanco Martínez, Alvar, Bosari, Silvano, Bradford, Robert, Brat, Gabriel, Bréant, Stéphane, Brown, Nicholas, Bryant, William, Bucalo, Mauro, Burgun, Anita, Cannataro, Mario, Carmona, Aldo, Caucheteux, Charlotte, Champ, Julien, Chen, Krista, Chen, Jin, Chiovato, Luca, Chiudinelli, Lorenzo, Cimino, James, Colicchio, Tiago, Cormont, Sylvie, Cossin, Sébastien, Craig, Jean, Cruz Bermúdez, Juan Luis, Dagliati, Arianna, Daniar, Mohamad, Daniel, Christel, Davoudi, Anahita, Dubiel, Julien, Duvall, Scott, Esteve, Loic, Fan, Shirley, Follett, Robert, Gaiolla, Paula Sa, Ganslandt, Thomas, Garmire, Lana, Gradinger, Tobias, Gramfort, Alexandre, Griffier, Romain, Griffon, Nicolas, Grisel, Olivier, Haverkamp, Christian, He, Bing, Henderson, Darren, Hilka, Martin, Holmes, John, Horki, Petar, Huling, Kenneth, Jannot, Anne Sophie, Jouhet, Vianney, Kavuluru, Ramakanth, Kirchoff, Katie, Krantz, Ian, Kraska, Detlef, Krishnamurthy, Ashok, L'Yi, Sehi, Le, Trang, Leblanc, Judith, Leite, Andressa Rr, Lemaitre, Guillaume, Lenert, Leslie, Leprovost, Damien, Loh, Ne Hooi Will, Lynch, Kristine, Mahmood, Sadiqa, Maidlow, Sarah, Malovini, Alberto, Maram, Anupama, Martel, Patricia, Masino, Aaron, Matheny, Michael, Maulhardt, Thomas, Mazzitelli, Maria, Mcduffie, Michael, Mensch, Arthur, Milano, Marianna, Minicucci, Marcos, Moore, Jason, Moraleda, Cinta, Morris, Jeffrey, Morris, Michele, Mousavi, Sajad, Mowery, Danielle, Murad, Douglas, Naughton, Thomas, Norman, James, Obeid, Jihad, Okoshi, Marina, Olson, Karen, Orlova, Nina, Ostasiewski, Brian, Palmer, Nathan, Paris, Nicolas, Pfaff, Emily, Pillion, Danielle, Prokosch, Hans, Prudente, Robson, Quirós González, Víctor, Ramoni, Rachel, Raskin, Maryna, Rieg, Siegbert, Roig Domínguez, Gustavo, Rojo, Pablo, Sáez, Carlos, Salamanca, Elisa, Samayamuthu, Malarkodi, Sandrin, Arnaud, Santos, Janaina Cc, Savino, Maria, Schriver, Emily, Schuettler, Juergen, Scudeller, Luigia, Serre, Patricia, Silvio, Domenick, Sliz, Piotr, Son, Jiyeon, Sonday, Charles, Tan, Bryce Wq, Tan, Byorn Wl, Tanni, Suzana, Terriza Torres, Ana, Tibollo, Valentina, Torti, Carlo, Trecarichi, Enrico, Tseng, Yi-Ju, Vallejos, Andrew, Varoquaux, Gael, Vie, Jill-Jênn, Vitacca, Michele, Wagholikar, Kavishwar, Waitman, Lemuel, Wassermann, Demian, William, Yuan, Xia, Zongqi, Yehya, Nadir, Zambelli, Alberto, Zhang, Harrison, Zucco, Chiara, Service d'informatique médicale et biostatistiques [CHU Necker], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Health data- and model- driven Knowledge Acquisition (HeKA), Inria de Paris, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche des Cordeliers (CRC (UMR_S_1138 / U1138)), École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité)-École Pratique des Hautes Études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPCité), UFR Médecine [Santé] - Université Paris Cité (UFR Médecine UPCité), Université Paris Cité (UPCité), Dr Bourgeois was funded by a grant from the Burroughs Wellcome Fund and supported by the Harvard-MIT Center for Regulatory Science. Mr Keller was funded by grant 5T32HG002295-18 from the National Human Genome Research Institute (NHGRI). Dr Aronow was funded by grant U24 HL148865 from the National Heart, Lung, and Blood Institute (NHLBI). Ms García Barrio was supported by grant PI18/00981 from the Carlos III Health Institute. Dr Gehlenborg was funded by grant T15 LM007092 from the NIH National Library of Medicine. Dr Geva was funded by grant K12 HD047349 from the NIH and Eunice Kennedy Shriver National Institute of Child Health and Human Development. Dr Hanauer was funded by grant UL1TR002240 from the National Center for Advancing Translational Sciences (NCATS). Drs Klann and Murphy were funded by grant 5UL1TR001857-05 from the NCATS and grant 5R01HG009174-04 from the NHGRI. Dr Luo was funded by grant R01LM013337 from the NLM. Mr Patel was funded by grant UL1TR002366 from the NCATS. Dr Gutiérrez-Sacristán was funded by grants K23HL148394 and L40HL148910 from the NIH NHLBI and grant UL1TR001420 from the NIH NCATS. Dr Visweswaran was funded by grant R01LM012095 from the NLM and grant UL1TR001857 from the NCATS. Dr Weber was supported by grants UL1TR002541 and UL1TR000005 from the NIH-NCATS, and grant R01LM013345 from the NLM., CHU Necker - Enfants Malades [AP-HP], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université de Paris (UP)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université de Paris (UP), Université de Paris - UFR Médecine Paris Centre [Santé] (UP Médecine Paris Centre), Université de Paris (UP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPC)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Sorbonne Université (SU)-Université Paris Cité (UPC), Université Paris Cité - UFR Médecine Paris Centre [Santé] (UPC Médecine Paris Centre), and Université Paris Cité (UPC)
- Subjects
medicine.medical_specialty ,MESH: Pandemics ,education ,Health Informatics ,MESH: Global Health ,MESH: Hospitalization ,Procalcitonin ,03 medical and health sciences ,0302 clinical medicine ,030225 pediatrics ,Internal medicine ,MESH: Child ,Epidemiology ,medicine ,Infection control ,MESH: COVID-19 ,MESH: SARS-CoV-2 ,030212 general & internal medicine ,health care economics and organizations ,MESH: Electronic Health Records ,Original Investigation ,MESH: Adolescent ,Disease surveillance ,MESH: Humans ,business.industry ,Research ,MESH: Infant, Newborn ,MESH: Child, Preschool ,Retrospective cohort study ,MESH: Retrospective Studies ,General Medicine ,medicine.disease ,MESH: Infant ,MESH: Male ,3. Good health ,Online Only ,Respiratory failure ,Viral pneumonia ,Cohort ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,business ,MESH: Female - Abstract
This cohort study aims to describe international hospitalization trends and key epidemiological and clinical features of children and youth with COVID-19., Key Points Question What are international trends in hospitalizations for children and youth with SARS-CoV-2, and what are the epidemiological and clinical features of these patients? Findings This cohort study of 671 children and youth found discrete surges in hospitalizations with variable trends and timing across countries. Common complications included cardiac arrhythmias and viral pneumonia, and laboratory findings included elevations in markers of inflammation and abnormalities of coagulation; few children and youth were treated with medications directed specifically at SARS-CoV-2. Meaning These findings suggest large-scale informatics-based approaches used to incorporate electronic health record data across health care systems can provide an efficient source of information to monitor disease activity and define epidemiological and clinical features of pediatric patients hospitalized with SARS-CoV-2 infections., Importance Additional sources of pediatric epidemiological and clinical data are needed to efficiently study COVID-19 in children and youth and inform infection prevention and clinical treatment of pediatric patients. Objective To describe international hospitalization trends and key epidemiological and clinical features of children and youth with COVID-19. Design, Setting, and Participants This retrospective cohort study included pediatric patients hospitalized between February 2 and October 10, 2020. Patient-level electronic health record (EHR) data were collected across 27 hospitals in France, Germany, Spain, Singapore, the UK, and the US. Patients younger than 21 years who tested positive for COVID-19 and were hospitalized at an institution participating in the Consortium for Clinical Characterization of COVID-19 by EHR were included in the study. Main Outcomes and Measures Patient characteristics, clinical features, and medication use. Results There were 347 males (52%; 95% CI, 48.5-55.3) and 324 females (48%; 95% CI, 44.4-51.3) in this study’s cohort. There was a bimodal age distribution, with the greatest proportion of patients in the 0- to 2-year (199 patients [30%]) and 12- to 17-year (170 patients [25%]) age range. Trends in hospitalizations for 671 children and youth found discrete surges with variable timing across 6 countries. Data from this cohort mirrored national-level pediatric hospitalization trends for most countries with available data, with peaks in hospitalizations during the initial spring surge occurring within 23 days in the national-level and 4CE data. A total of 27 364 laboratory values for 16 laboratory tests were analyzed, with mean values indicating elevations in markers of inflammation (C-reactive protein, 83 mg/L; 95% CI, 53-112 mg/L; ferritin, 417 ng/mL; 95% CI, 228-607 ng/mL; and procalcitonin, 1.45 ng/mL; 95% CI, 0.13-2.77 ng/mL). Abnormalities in coagulation were also evident (D-dimer, 0.78 ug/mL; 95% CI, 0.35-1.21 ug/mL; and fibrinogen, 477 mg/dL; 95% CI, 385-569 mg/dL). Cardiac troponin, when checked (n = 59), was elevated (0.032 ng/mL; 95% CI, 0.000-0.080 ng/mL). Common complications included cardiac arrhythmias (15.0%; 95% CI, 8.1%-21.7%), viral pneumonia (13.3%; 95% CI, 6.5%-20.1%), and respiratory failure (10.5%; 95% CI, 5.8%-15.3%). Few children were treated with COVID-19–directed medications. Conclusions and Relevance This study of EHRs of children and youth hospitalized for COVID-19 in 6 countries demonstrated variability in hospitalization trends across countries and identified common complications and laboratory abnormalities in children and youth with COVID-19 infection. Large-scale informatics-based approaches to integrate and analyze data across health care systems complement methods of disease surveillance and advance understanding of epidemiological and clinical features associated with COVID-19 in children and youth.
- Published
- 2021
- Full Text
- View/download PDF
16. An integrated approach to improve clinical trial efficiency: Linking a clinical trial management system into the Research Integrated Network of Systems.
- Author
-
Sampson, Royce, Shapiro, Steve, He, Wenjun, Denmark, Signe, Kirchoff, Katie, Hutson, Kyle, Paranal, Rechelle, Forney, Leila, McGhee, Kimberly, and Harvey, Jillian
- Subjects
CLINICAL trials ,TRANSLATIONAL research ,SCIENCE awards ,RESEARCH institutes - Abstract
Low-accruing clinical trials delay translation of research breakthroughs into the clinic, expose participants to risk without providing meaningful clinical insight, increase the cost of therapies, and waste limited resources. By tracking patient accrual, Clinical and Translational Science Awards hubs can identify at-risk studies and provide them the support needed to reach recruitment goals and maintain financial solvency. However, tracking accrual has proved challenging because relevant patient- and protocol-level data often reside in siloed systems. To address this fragmentation, in September 2020 the South Carolina Clinical and Translational Research Institute, with an academic home at the Medical University of South Carolina, implemented a clinical trial management system (CTMS), with its access to patient-level data, and incorporated it into its Research Integrated Network of Systems (RINS), which links study-level data across disparate systems relevant to clinical research. Within the first year of CTMS implementation, 324 protocols were funneled through CTMS/RINS, with more than 2600 participants enrolled. Integrated data from CTMS/RINS have enabled near-real-time assessment of patient accrual and accelerated reimbursement from industry sponsors. For institutions with bioinformatics or programming capacity, the CTMS/RINS integration provides a powerful model for tracking and improving clinical trial efficiency, compliance, and cost-effectiveness. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
17. Research Integrated Network of Systems (RINS): a virtual data warehouse for the acceleration of translational research.
- Author
-
He, Wenjun, Kirchoff, Katie G, Sampson, Royce R, McGhee, Kimberly K, Cates, Andrew M, Obeid, Jihad S, and Lenert, Leslie A
- Abstract
Objective: Integrated, real-time data are crucial to evaluate translational efforts to accelerate innovation into care. Too often, however, needed data are fragmented in disparate systems. The South Carolina Clinical & Translational Research Institute at the Medical University of South Carolina (MUSC) developed and implemented a universal study identifier-the Research Master Identifier (RMID)-for tracking research studies across disparate systems and a data warehouse-inspired model-the Research Integrated Network of Systems (RINS)-for integrating data from those systems.Materials and Methods: In 2017, MUSC began requiring the use of RMIDs in informatics systems that support human subject studies. We developed a web-based tool to create RMIDs and application programming interfaces to synchronize research records and visualize linkages to protocols across systems. Selected data from these disparate systems were extracted and merged nightly into an enterprise data mart, and performance dashboards were created to monitor key translational processes.Results: Within 4 years, 5513 RMIDs were created. Among these were 726 (13%) bridged systems needed to evaluate research study performance, and 982 (18%) linked to the electronic health records, enabling patient-level reporting.Discussion: Barriers posed by data fragmentation to assessment of program impact have largely been eliminated at MUSC through the requirement for an RMID, its distribution via RINS to disparate systems, and mapping of system-level data to a single integrated data mart.Conclusion: By applying data warehousing principles to federate data at the "study" level, the RINS project reduced data fragmentation and promoted research systems integration. [ABSTRACT FROM AUTHOR]- Published
- 2021
- Full Text
- View/download PDF
18. Enhancing study recruitment through implementation of an opt-out, cold contact process with consideration for autonomy, beneficence and justice.
- Author
-
Pittman T, Bell L, Jones S, Brown K, Kirchoff K, and Flume P
- Abstract
The potential utilization of a cold-contact approach to research recruitment, where members of the research team are unknown to the patient, has grown with the expanded use of electronic health records (EHRs) and affiliated patient portals. Institutions that permit this strategy vary in their implementation and management of it but tend to lean towards more conservative approaches. This process paper describes the Medical University of South Carolina's transition to an opt-out model of "cold-contact" recruitment (known as patient outreach recruitment or POR), wherein patients can be contacted so long as they do not express an unwillingness to receive such communication. The work highlights the benefits of this model by explaining how it, in many ways, supports and protects autonomy, beneficence, and justice for patients. The paper then describes the process of standing up the recruitment strategy, communicating the change to patients and the community, and documenting study team contact and patient research preference. Data supporting increased access to potentially eligible patients of greater diversity as well as initial researcher feedback on perceived success of POR is also shared. The paper ends with a discussion of next steps to enhance the POR process via more detailed data collection and reengagement with community stakeholders., Competing Interests: The authors have no conflicts of interest to disclose., (© The Author(s) 2023.)
- Published
- 2023
- Full Text
- View/download PDF
19. VACtrac: enhancing access immunization registry data for population outreach using the Bulk Fast Healthcare Interoperable Resource (FHIR) protocol.
- Author
-
Lenert L, Jacobs J, Agnew J, Ding W, Kirchoff K, Weatherston D, and Deans K
- Abstract
COVID-19 vaccination uptake has been suboptimal, even in high-risk populations. New approaches are needed to bring vaccination data to the groups leading outreach efforts. This article describes work to make state-level vaccination data more accessible by extending the Bulk Fast Healthcare Interoperability Resource (FHIR) standard to better support the repeated retrieval of vaccination data for coordinated outreach efforts. We also describe a corresponding low-foot-print software for population outreach that automates repeated checks of state-level immunization data and prioritizes outreach by social determinants of health. Together this software offers an integrated approach to addressing vaccination gaps. Several extensions to the Bulk FHIR protocol were needed to support bulk query of immunization records. These are described in detail. The results of a pilot study, using the outreach tool to target a population of 1500 patients are also described. The results confirmed the limitations of current patient-by-patient approach for querying state immunizations systems for population data and the feasibility of a Bulk FHIR approach., (© The Author(s) 2022. Published by Oxford University Press on behalf of the American Medical Informatics Association.)
- Published
- 2022
- Full Text
- View/download PDF
20. International Changes in COVID-19 Clinical Trajectories Across 315 Hospitals and 6 Countries: Retrospective Cohort Study.
- Author
-
Weber GM, Zhang HG, L'Yi S, Bonzel CL, Hong C, Avillach P, Gutiérrez-Sacristán A, Palmer NP, Tan ALM, Wang X, Yuan W, Gehlenborg N, Alloni A, Amendola DF, Bellasi A, Bellazzi R, Beraghi M, Bucalo M, Chiovato L, Cho K, Dagliati A, Estiri H, Follett RW, García Barrio N, Hanauer DA, Henderson DW, Ho YL, Holmes JH, Hutch MR, Kavuluru R, Kirchoff K, Klann JG, Krishnamurthy AK, Le TT, Liu M, Loh NHW, Lozano-Zahonero S, Luo Y, Maidlow S, Makoudjou A, Malovini A, Martins MR, Moal B, Morris M, Mowery DL, Murphy SN, Neuraz A, Ngiam KY, Okoshi MP, Omenn GS, Patel LP, Pedrera Jiménez M, Prudente RA, Samayamuthu MJ, Sanz Vidorreta FJ, Schriver ER, Schubert P, Serrano Balazote P, Tan BW, Tanni SE, Tibollo V, Visweswaran S, Wagholikar KB, Xia Z, Zöller D, Kohane IS, Cai T, South AM, and Brat GA
- Subjects
- Adult, Aged, Female, Hospitalization, Hospitals, Humans, Male, Middle Aged, Retrospective Studies, SARS-CoV-2, COVID-19, Pandemics
- Abstract
Background: Many countries have experienced 2 predominant waves of COVID-19-related hospitalizations. Comparing the clinical trajectories of patients hospitalized in separate waves of the pandemic enables further understanding of the evolving epidemiology, pathophysiology, and health care dynamics of the COVID-19 pandemic., Objective: In this retrospective cohort study, we analyzed electronic health record (EHR) data from patients with SARS-CoV-2 infections hospitalized in participating health care systems representing 315 hospitals across 6 countries. We compared hospitalization rates, severe COVID-19 risk, and mean laboratory values between patients hospitalized during the first and second waves of the pandemic., Methods: Using a federated approach, each participating health care system extracted patient-level clinical data on their first and second wave cohorts and submitted aggregated data to the central site. Data quality control steps were adopted at the central site to correct for implausible values and harmonize units. Statistical analyses were performed by computing individual health care system effect sizes and synthesizing these using random effect meta-analyses to account for heterogeneity. We focused the laboratory analysis on C-reactive protein (CRP), ferritin, fibrinogen, procalcitonin, D-dimer, and creatinine based on their reported associations with severe COVID-19., Results: Data were available for 79,613 patients, of which 32,467 were hospitalized in the first wave and 47,146 in the second wave. The prevalence of male patients and patients aged 50 to 69 years decreased significantly between the first and second waves. Patients hospitalized in the second wave had a 9.9% reduction in the risk of severe COVID-19 compared to patients hospitalized in the first wave (95% CI 8.5%-11.3%). Demographic subgroup analyses indicated that patients aged 26 to 49 years and 50 to 69 years; male and female patients; and black patients had significantly lower risk for severe disease in the second wave than in the first wave. At admission, the mean values of CRP were significantly lower in the second wave than in the first wave. On the seventh hospital day, the mean values of CRP, ferritin, fibrinogen, and procalcitonin were significantly lower in the second wave than in the first wave. In general, countries exhibited variable changes in laboratory testing rates from the first to the second wave. At admission, there was a significantly higher testing rate for D-dimer in France, Germany, and Spain., Conclusions: Patients hospitalized in the second wave were at significantly lower risk for severe COVID-19. This corresponded to mean laboratory values in the second wave that were more likely to be in typical physiological ranges on the seventh hospital day compared to the first wave. Our federated approach demonstrated the feasibility and power of harmonizing heterogeneous EHR data from multiple international health care systems to rapidly conduct large-scale studies to characterize how COVID-19 clinical trajectories evolve., (©Griffin M Weber, Harrison G Zhang, Sehi L'Yi, Clara-Lea Bonzel, Chuan Hong, Paul Avillach, Alba Gutiérrez-Sacristán, Nathan P Palmer, Amelia Li Min Tan, Xuan Wang, William Yuan, Nils Gehlenborg, Anna Alloni, Danilo F Amendola, Antonio Bellasi, Riccardo Bellazzi, Michele Beraghi, Mauro Bucalo, Luca Chiovato, Kelly Cho, Arianna Dagliati, Hossein Estiri, Robert W Follett, Noelia García Barrio, David A Hanauer, Darren W Henderson, Yuk-Lam Ho, John H Holmes, Meghan R Hutch, Ramakanth Kavuluru, Katie Kirchoff, Jeffrey G Klann, Ashok K Krishnamurthy, Trang T Le, Molei Liu, Ne Hooi Will Loh, Sara Lozano-Zahonero, Yuan Luo, Sarah Maidlow, Adeline Makoudjou, Alberto Malovini, Marcelo Roberto Martins, Bertrand Moal, Michele Morris, Danielle L Mowery, Shawn N Murphy, Antoine Neuraz, Kee Yuan Ngiam, Marina P Okoshi, Gilbert S Omenn, Lav P Patel, Miguel Pedrera Jiménez, Robson A Prudente, Malarkodi Jebathilagam Samayamuthu, Fernando J Sanz Vidorreta, Emily R Schriver, Petra Schubert, Pablo Serrano Balazote, Byorn WL Tan, Suzana E Tanni, Valentina Tibollo, Shyam Visweswaran, Kavishwar B Wagholikar, Zongqi Xia, Daniela Zöller, The Consortium For Clinical Characterization Of COVID-19 By EHR (4CE), Isaac S Kohane, Tianxi Cai, Andrew M South, Gabriel A Brat. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 11.10.2021.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.