20 results on '"Konrad A Hughen"'
Search Results
2. Enhanced monsoon-driven upwelling in Southeast Asia during the Little Ice Age
- Author
-
Mengli Chen, Patrick Martin, Haojia Ren, Run Zhang, Dhrubajyoti Samanta, Yi‐Chi Chen, Konrad A. Hughen, Kim Hoang Phan, Si Tuan Vo, Nathalie F. Goodkin, Asian School of the Environment, and Earth Observatory of Singapore
- Subjects
Atmospheric Science ,N Isotope ,Climate Change ,Paleontology ,Geology [Science] ,Oceanography - Abstract
Climate change impacts ocean nutrient availability and will likely alter the marine food web. While climate models predict decreased average ocean productivity, the extent of these changes, especially in the marginal seas upon which large human populations depend, is not well understood. Here, we reconstructed changes in seawater phosphate concentration and nitrate source over the past 400 years, which reveals a more than 50% decline in residence time of seawater phosphate, and 8%–48% decline in subsurface nitrogen supply following the coldest period of Little Ice Age. Our data indicates a link between surface ocean nutrient supply and the East Asian Summer Monsoon strength in an economically important marginal sea. As climate models predict that the East Asian Summer monsoon will strengthen in the future, our study implies that surface ocean primary productivity may increase in the South China Sea, contrary to the predicted decrease in global average ocean productivity. Ministry of Education (MOE) Nanyang Technological University Published version The research was supported by the Singapore Ministry of Education Academic Research Fund Tier 2 (award MOE2016-T2-1-016 to N. F. G. and K. A. H.), by the Earth Observatory of Singapore and the Singapore Ministry of Education under the Research Centers of Excellence initiative, and by the Taiwan Ministry of Science and Technology (MOST 110-2636-M-002-002- to H. R.)
- Published
- 2023
3. Response to Comment on 'A global environmental crisis 42,000 years ago'
- Author
-
Yassine Souilmi, Thomas Peter, Alan G. Hogg, Marina Friedel, Chris S. M. Turney, Jonathan G. Palmer, Alan Cooper, Florian Adolphi, Pavla Fenwick, Jiabo Liu, Ivo Suter, Christopher J. Fogwill, Ken McCracken, Andrew Lorrey, James M. Russell, Raimund Muscheler, Eleanor Rainsley, Raymond Tobler, Julien Anet, Janet M. Wilmshurst, Zoë Thomas, Konrad A Hughen, Eugene Rozanov, Timothy J Heaton, J. Tyler Faith, Matt S. McGlone, Janelle Stevenson, Paolo Sebastianelli, Norbert R. Nowaczyk, Christopher Bronk Ramsey, Anthony Dosseto, Matthew Lipson, and Roland Zech
- Subjects
0106 biological sciences ,010506 paleontology ,0303 health sciences ,History ,Multidisciplinary ,530: Physik ,Event (relativity) ,010603 evolutionary biology ,01 natural sciences ,Public interest ,Environmental crisis ,03 medical and health sciences ,Misrepresentation ,13. Climate action ,Political economy ,Geomagnetic excursion ,Magnetic poles ,030304 developmental biology ,0105 earth and related environmental sciences - Abstract
Our study on the exact timing and the potential climatic, environmental, and evolutionary consequences of the Laschamps Geomagnetic Excursion has generated the hypothesis that geomagnetism represents an unrecognized driver in environmental and evolutionary change. It is important for this hypothesis to be tested with new data, and encouragingly, none of the studies presented by Picin et al . undermine our model.
- Published
- 2021
4. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP)
- Author
-
Ronny Friedrich, Christopher Bronk Ramsey, Konrad A Hughen, William E. N. Austin, Frederick Reinig, E. Marian Scott, Alex Bayliss, Lukas Wacker, Alexandra Fogtmann-Schulz, Jesper V. Olsen, Bernd Kromer, Timothy J Heaton, Pieter Meiert Grootes, Martin Butzin, Paul G. Blackwell, Charlotte Pearson, Peter Köhler, Hai Cheng, Christian Turney, Florian Adolphi, Sturt W. Manning, Ron W Reimer, David Richards, Michael Friedrich, R. Lawrence Edwards, Fusa Miyake, Jonathan G. Palmer, Alan G. Hogg, Thomas P. Guilderson, Paula J. Reimer, Johannes van der Plicht, Minoru Sakamoto, Ulf Büntgen, Manuela Capano, Irka Hajdas, Raimund Muscheler, Sabrina G K Kudsk, John Southon, Sahra Talamo, Simon Fahrni, Adam Sookdeo, Edouard Bard, Chaire Evolution du climat et de l'océan, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Collège de France (CdF (institution))-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), National Natural Science Foundation of China (NSFC)NSFC 41888101NSFC 41731174Ministry of Education, China - 111 ProjectD19002National Science Foundation (NSF)1702816Malcolm H. Wiener Foundation - German Science foundation Swiss National Science Foundation (SNSF)200021L_157187College de France Swedish Research CouncilEuropean Commission Knut & Alice Wallenberg Foundation Federal Ministry of Education & Research (BMBF) PalMod project 01LP1505BEuropean Research Council (ERC)803147-RESOLUTIONAustralian Research CouncilFL100100195DP170104665UKRI Natural Environment Research Council NE/M004619/1Leverhulme TrustRF-2019-140\9, Isotope Research, Collège de France - Chaire Evolution du climat et de l'océan, Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), ANR-17-CE01-0001,CARBOTRYDH,Etude à haute résolution du radiocarbone des séries d'anneaux d'arbres des Alpes du Sud pour le Dryas Récent et l'Holocène: Une fenêtre sur le passé pour comprendre les variations rapides du cycle du carbone et de l'activité solaire(2017), Paula J Reimer, William E N Austin, Edouard Bard, Alex Bayli, Paul G Blackwell, Christopher Bronk Ramsey, Martin Butzin, Hai Cheng, R Lawrence Edward, Michael Friedrich, Pieter M Groote, Thomas P Guilderson, Irka Hajda, Timothy J Heaton, Alan G Hogg, Konrad A Hughen, Bernd Kromer, Sturt W Manning, Raimund Muscheler, Jonathan G Palmer, Charlotte Pearson, Johannes van der Plicht, Ron W Reimer, David A Richard, E Marian Scott, John R Southon, Christian S M Turney, Lukas Wacker, Florian Adolphi, Ulf Büntgen, Manuela Capano, Simon M Fahrni, Alexandra Fogtmann-Schulz, Ronny Friedrich, Peter Köhler, Sabrina Kudsk, Fusa Miyake, Jesper Olsen, Frederick Reinig, Minoru Sakamoto, Adam Sookdeo, Sahra Talamo, NERC, University of St Andrews. Coastal Resources Management Group, University of St Andrews. School of Geography & Sustainable Development, University of St Andrews. Marine Alliance for Science & Technology Scotland, University of St Andrews. Scottish Oceans Institute, and University of St Andrews. St Andrews Sustainability Institute
- Subjects
010506 paleontology ,Archeology ,Calibration curve ,01 natural sciences ,calibration curve radiocarbon IntCal20 ,law.invention ,Atmosphere ,law ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,calibration curve ,0601 history and archaeology ,Radiocarbon dating ,R2C ,Ocean circulation model ,0105 earth and related environmental sciences ,GE ,Extinction ,IntCal20 ,060102 archaeology ,Northern Hemisphere ,Paleontology ,3rd-DAS ,06 humanities and the arts ,Radiocarbon ,Earth system science ,0402 Geochemistry, 0406 Physical Geography and Environmental Geoscience, 2101 Archaeology ,radiocarbon ,General Earth and Planetary Sciences ,Physical geography ,BDC ,Geology ,GE Environmental Sciences - Abstract
Authors thank the National Natural Science Foundation of China grants NSFC 41888101 and NSFC 41731174, the 111 program of China (D19002), U.S. NSF Grant 1702816, and the Malcolm H. Wiener Foundation for support for research that contributed to the IntCal20 curve. The work on the Swiss and German YD trees was funded by the German Science foundation and the Swiss National Foundation (grant number: 200021L_157187). The operation in Aix-en-Provence is funded by the EQUIPEX ASTER-CEREGE, the Collège de France and the ANR project CARBOTRYDH (to EB). The work on the correlation of tree ring 14C with ice core 10Be was partially supported by the Swedish Research Council and the Knut and Alice Wallenberg foundation. M. Butzin is supported by the German Federal Ministry of Education and Research (BMBF) through the PalMod project (grant number: 01LP1505B). S. Talamo and M. Friedrich. are funded by the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement No. 803147-RESOLUTION, awarded to ST). C. Turney would like to acknowledge support of the Australian Research Council (FL100100195 and DP170104665). P. Reimer and W. Austin acknowledge the support of the UKRI Natural Environment Research Council (Grant NE/M004619/1). Radiocarbon (14C) ages cannot provide absolutely dated chronologies for archaeological or paleoenvironmental studies directly but must be converted to calendar age equivalents using a calibration curve compensating for fluctuations in atmospheric 14C concentration. Although calibration curves are constructed from independently dated archives, they invariably require revision as new data become available and our understanding of the Earth system improves. In this volume the international 14C calibration curves for both the Northern and Southern Hemispheres, as well as for the ocean surface layer, have been updated to include a wealth of new data and extended to 55,000 cal BP. Based on tree rings, IntCal20 now extends as a fully atmospheric record to ca. 13,900 cal BP. For the older part of the timescale, IntCal20 comprises statistically integrated evidence from floating tree-ring chronologies, lacustrine and marine sediments, speleothems, and corals. We utilized improved evaluation of the timescales and location variable 14C offsets from the atmosphere (reservoir age, dead carbon fraction) for each dataset. New statistical methods have refined the structure of the calibration curves while maintaining a robust treatment of uncertainties in the 14C ages, the calendar ages and other corrections. The inclusion of modeled marine reservoir ages derived from a three-dimensional ocean circulation model has allowed us to apply more appropriate reservoir corrections to the marine 14C data rather than the previous use of constant regional offsets from the atmosphere. Here we provide an overview of the new and revised datasets and the associated methods used for the construction of the IntCal20 curve and explore potential regional offsets for tree-ring data. We discuss the main differences with respect to the previous calibration curve, IntCal13, and some of the implications for archaeology and geosciences ranging from the recent past to the time of the extinction of the Neanderthals. Publisher PDF
- Published
- 2020
- Full Text
- View/download PDF
5. Coral-based proxy calibrations constrain ENSO-driven sea surface temperature and salinity gradients in the Western Pacific Warm Pool
- Author
-
Konrad A Hughen, Iulia-Madalina Streanga, Dhrubajyoti Samanta, Adam D. Switzer, Ahmad Taufiq Bin Mohamed Mohtar, Nathalie F. Goodkin, James M. Cervino, Riovie D. Ramos, Asian School of the Environment, and Earth Observatory of Singapore
- Subjects
Wet season ,010506 paleontology ,geography ,geography.geographical_feature_category ,biology ,δ18O ,Coral ,Science ,Porites ,Paleontology ,Atoll ,010502 geochemistry & geophysics ,Oceanography ,biology.organism_classification ,01 natural sciences ,Western Hemisphere Warm Pool ,Sea surface temperature ,Sr/Ca ,δ18Οsw ,Climatology ,Dry season ,Ecology, Evolution, Behavior and Systematics ,Geology ,0105 earth and related environmental sciences ,Earth-Surface Processes - Abstract
Constraining past variability in ocean conditions in the Western Pacific Warm Pool (WPWP) and examining how it has been influenced by the El-Niño Southern Oscillation (ENSO) is critical to predicting how these systems may change in the future. To characterize the spatiotemporal variability of the WPWP and ENSO during the past three decades, we analyzed climate proxies using coral cores sampled from Porites spp. from Kosrae Island (KOS) and Woleai Atoll (WOL) in the Federated States of Micronesia. Coral skeleton samples drilled along the major growth axis were analyzed for oxygen isotopes (δ18Oc) and trace element ratios (Sr/Ca), used to reconstruct sea surface salinity and temperature (SSS and SST). Pseudocoral δ18O time series (δ18Opseudo) were calculated from gridded instrumental observations and compared to δ18Oc, followed by fine-tuning using coral Sr/Ca and gridded SST, to produce age models for each coral. The thermal component of δ18Oc was removed using Sr/Ca for SST, to derive δ18O of seawater (δ18Osw), a proxy for SSS. The Sr/Ca, and δ18Osw records were compared to instrumental SST and SSS to test their fidelity as regional climate recorders. We found both sites display significant Sr/Ca-SST calibrations at monthly and interannual (dry season, wet season, mean annual) timescales. At each site, δ18Osw also exhibited significant calibrations to SSS across the same timescales. The difference between normalized dry season SST (Sr/Ca) anomalies from KOS and WOL generates a zonal SST gradient (KOSWOLSST), capturing the east-west WPWP migration observed during ENSO events. Similarly, the average of normalized dry season δ18Osw anomalies from both sites produces an SSS index (KOSWOLSSS) reflecting the regional hydrological changes. Both proxy indices, KOSWOLSST and KOSWOLSSS, are significantly correlated to regional ENSO indices. These calibration results highlight the potential for extending the climate record, revealing spatial hydrological gradients within the WPWP and ENSO variability back to the end of the Little Ice Age. Ministry of Education (MOE) Published version We also thank the crew of the M/V Alucia for assistance during the 2012 coral drilling expedition to FSM, funded by the Dalio Family Foundation through a WHOI Access to The Sea grant to KAH (#25110104). Geochemical analysis was funded by Singapore Ministry of Education Academic Research Fund Tier-2 (# MOE2016-T2-1016) to NFG and KAH, and by the WHOI Summer Student Fellowship Program (00450400) and Coastal Preservation Network 501c to IMS.
- Published
- 2021
6. Marine20—the marine radiocarbon age calibration curve (0 – 55,000 cal BP)
- Author
-
Luke C Skinner, William E. N. Austin, Edouard Bard, Christopher Bronk Ramsey, Ron W Reimer, Andrea Burke, Mea S Cook, Timothy J Heaton, Paula J. Reimer, Martin Butzin, Jess F. Adkins, Jesper V. Olsen, Peter Köhler, Pieter Meiert Grootes, Bernd Kromer, Konrad A Hughen, University of St Andrews. School of Geography & Sustainable Development, University of St Andrews. Scottish Oceans Institute, University of St Andrews. St Andrews Sustainability Institute, University of St Andrews. Coastal Resources Management Group, University of St Andrews. Marine Alliance for Science & Technology Scotland, University of St Andrews. School of Earth & Environmental Sciences, University of St Andrews. St Andrews Isotope Geochemistry, Chaire Evolution du climat et de l'océan, Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Leverhulme TrustRF-2019-140\9Federal Ministry of Education & Research (BMBF) PalMod project 01LP1505B01LP1919AEQUIPEX ASTER-CEREGE French National Research Agency (ANR), Collège de France - Chaire Evolution du climat et de l'océan, and ANR-17-CE01-0001,CARBOTRYDH,Etude à haute résolution du radiocarbone des séries d'anneaux d'arbres des Alpes du Sud pour le Dryas Récent et l'Holocène: Une fenêtre sur le passé pour comprendre les variations rapides du cycle du carbone et de l'activité solaire(2017)
- Subjects
010506 paleontology ,Archeology ,marine environment ,010504 meteorology & atmospheric sciences ,Calibration curve ,sub-01 ,Atmospheric sciences ,01 natural sciences ,Carbon cycle ,law.invention ,Ice core ,Computer model ,law ,[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry ,carbon cycle ,Calibration ,Sea ice ,Bayesian modeling calibration carbon cycle computer model marine environment ,14. Life underwater ,Radiocarbon dating ,SDG 14 - Life Below Water ,Marine environment ,R2C ,0105 earth and related environmental sciences ,geography ,geography.geographical_feature_category ,GE ,Biosphere ,DAS ,Ocean general circulation model ,calibration ,Bayesian modeling ,13. Climate action ,General Earth and Planetary Sciences ,Environmental science ,computer model ,BDC ,GE Environmental Sciences - Abstract
T.J. Heaton is supported by a Leverhulme Trust Fellowship RF-2019-140\9, “Improving the Measurement of Time Using Radiocarbon”. M Butzin is supported by the German Federal Ministry of Education and Research (BMBF), as Research for Sustainability initiative (FONA); www.fona.de through the PalMod project (grant numbers: 01LP1505B, 01LP1919A). E. Bard is supported by EQUIPEX ASTER-CEREGE and ANR CARBOTRYDH. Meetings of the IntCal Marine Focus group have been supported by Collège de France. The concentration of radiocarbon (14C) differs between ocean and atmosphere. Radiocarbon determinations from samples which obtained their 14C in the marine environment therefore need a marine-specific calibration curve and cannot be calibrated directly against the atmospheric-based IntCal20 curve. This paper presents Marine20, an update to the internationally agreed marine radiocarbon age calibration curve that provides a non-polar global-average marine record of radiocarbon from 0–55 cal kBP and serves as a baseline for regional oceanic variation. Marine20 is intended for calibration of marine radiocarbon samples from non-polar regions; it is not suitable for calibration in polar regions where variability in sea ice extent, ocean upwelling and air-sea gas exchange may have caused larger changes to concentrations of marine radiocarbon. The Marine20 curve is based upon 500 simulations with an ocean/atmosphere/biosphere box-model of the global carbon cycle that has been forced by posterior realizations of our Northern Hemispheric atmospheric IntCal20 14C curve and reconstructed changes in CO2 obtained from ice core data. These forcings enable us to incorporate carbon cycle dynamics and temporal changes in the atmospheric 14C level. The box-model simulations of the global-average marine radiocarbon reservoir age are similar to those of a more complex three-dimensional ocean general circulation model. However, simplicity and speed of the box model allow us to use a Monte Carlo approach to rigorously propagate the uncertainty in both the historic concentration of atmospheric 14C and other key parameters of the carbon cycle through to our final Marine20 calibration curve. This robust propagation of uncertainty is fundamental to providing reliable precision for the radiocarbon age calibration of marine based samples. We make a first step towards deconvolving the contributions of different processes to the total uncertainty; discuss the main differences of Marine20 from the previous age calibration curve Marine13; and identify the limitations of our approach together with key areas for further work. The updated values for ΔR, the regional marine radiocarbon reservoir age corrections required to calibrate against Marine20, can be found at the data base http://calib.org/marine/. Publisher PDF
- Published
- 2020
- Full Text
- View/download PDF
7. Impact of prawn farming effluent on coral reef water nutrients and microorganisms
- Author
-
Tracy J. Mincer, Cynthia Becker, Amy Apprill, Laura Weber, Konrad A Hughen, and Justin E. Ossolinski
- Subjects
0301 basic medicine ,Microorganism ,Management, Monitoring, Policy and Law ,Aquatic Science ,Biology ,lcsh:Aquaculture. Fisheries. Angling ,03 medical and health sciences ,Nutrient ,Aquaculture ,lcsh:QH540-549.5 ,Effluent ,Water Science and Technology ,lcsh:SH1-691 ,geography ,geography.geographical_feature_category ,business.industry ,Ecology ,fungi ,technology, industry, and agriculture ,Coral reef ,Fishery ,030104 developmental biology ,Microbial population biology ,Agriculture ,Prawn ,lcsh:Ecology ,business ,geographic locations - Abstract
Tropical coral reefs are characterized by low-nutrient waters that support oligotrophic picoplankton over a productive benthic ecosystem. Nutrient-rich effluent released from aquaculture facilities into coral reef environments may potentially upset the balance of these ecosystems by altering picoplankton dynamics. In this study, we examined how effluent from a prawn (Litopenaeus vannamei) farming facility in Al Lith, Saudi Arabia, impacted the inorganic nutrients and prokaryotic picoplankton community in the waters overlying coral reefs in the Red Sea. Across 24 sites, ranging 0-21 km from the effluent point source, we measured nutrient concentrations, quantified microbial cell abundances, and sequenced bacterial and archaeal small subunit ribosomal RNA (SSU rRNA) genes to examine picoplankton phylogenetic diversity and community composition. Our results demonstrated that sites nearest to the outfall had increased concentrations of phosphate and ammonium and elevated abundances of non-pigmented picoplankton (generally heterotrophic bacteria). Shifts in the composition of the picoplankton community were observed with increasing distance from the effluent canal outfall. Waters within 500 m of the outfall harbored the most distinct picoplanktonic community and contained putative pathogens within the genus Francisella and order Rickettsiales. While our study suggests that at the time of sampling, the Al Lith aquaculture facility exhibited relatively minor influences on inorganic nutrients and microbial communities, studying the longer-term impacts of the aquaculture effluent on the organisms within the reef will be necessary in order to understand the full extent of the facilityís impact on the reef ecosystem.
- Published
- 2017
8. Consistently dated Atlantic sediment cores over the last 40 thousand years
- Author
-
Konrad A Hughen, Joel B Pedro, Carsten Rühlemann, Paul Cornils Knutz, Natalia Vázquez Riveiros, Trond Dokken, Mary Elliot, James A Collins, Ana Luiza Spadano Albuquerque, Silvia Osorio Nave, William E. N. Austin, Simon Jung, Julia Gottschalk, Joachim Schönfeld, Lukas Wacker, Wiem Fersi, Helge W Arz, Paolo Scussolini, Peter M Abbott, Frank Peeters, Laurence Vidal, Janne Repschläger, Syee Weldeab, Luke C Skinner, Emilia Salgueiro, Bernard Dennielou, Jorijntje Henderiks, Gesine Mollenhauer, Filipa Naughton, Aurélie Penaud, Claire Waelbroeck, Charlotte Skonieczny, Jean-Pascal Dumoulin, Jacques Giraudeau, David Van Rooij, Victoria L Peck, François Thil, Irka Hajdas, David Thornalley, Bryan C Lougheed, Jenny Roberts, Mélanie Wary, Anders E. Carlson, Delia W Oppo, Alex Dickson, Gema Martínez-Méndez, Samuel Toucanne, Rodrigo Costa Portilho-Ramos, Thomas M Marchitto, Maria Fernanda Sanchez Goñi, Christa Farmer, David C Lund, Linda Rossignol, Antje H L Voelker, Martin Ziegler, Susana Martin Lebreiro, Bruno Malaizé, Lise Missiaen, Dirk Nürnberg, Rosemarie E Came, Jean Lynch-Stieglitz, Stéphanie Desprat, Frédérique Eynaud, Stratigraphy and paleontology, Stratigraphy & paleontology, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology in Zürich [Zürich] (ETH Zürich), Institute for Particle Physics, Laboratoire de mesure du carbone 14 (LMC14 - UMS 2572), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Ministère de la Culture et de la Communication (MCC)-Centre National de la Recherche Scientifique (CNRS), ACROE - Ingénierie de la Création Artistique (ACROE-ICA), Ministère de la Culture et de la Communication (MCC)-Institut National Polytechnique de Grenoble (INPG), Environnements et Paléoenvironnements OCéaniques (EPOC), Observatoire aquitain des sciences de l'univers (OASU), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE)-Centre National de la Recherche Scientifique (CNRS), UMR 5805 Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), Departamento de Geoquimica, Universidade Federal Fluminense [Rio de Janeiro] (UFF), College of Earth, Ocean and Atmospheric Sciences [Corvallis] (CEOAS), Oregon State University (OSU), German Research Centre for Geosciences - Helmholtz-Centre Potsdam (GFZ), IFREMER, Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Laboratoire de Planétologie et Géodynamique UMR6112 (LPG), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Université d'Angers (UA), Paleobiology Program, Uppsala University, Department of Marine Chemistry and Geochemistry (WHOI), Woods Hole Oceanographic Institution (WHOI), Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Laboratorio Nacional de Energia e Geologia, Departamento de Geologia Marinha, Vrije Universiteit Amsterdam [Amsterdam] (VU), Domaines Océaniques (LDO), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Observatoire des Sciences de l'Univers-Institut d'écologie et environnement-Centre National de la Recherche Scientifique (CNRS), Agricultural and Resource Economics Department, University of Maryland [College Park], University of Maryland System-University of Maryland System, Géosciences Paris Sud (GEOPS), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Géodynamique et enregistrement Sédimentaire - Geosciences Marines (GM-LGS), Centre européen de recherche et d'enseignement des géosciences de l'environnement (CEREGE), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Mathematisches institut, Albert-Ludwigs University, University of St Andrews. School of Geography & Sustainable Development, University of St Andrews. Scottish Oceans Institute, University of St Andrews. St Andrews Sustainability Institute, University of St Andrews. Coastal Resources Management Group, University of St Andrews. Marine Alliance for Science & Technology Scotland, Skinner, Luke [0000-0002-5050-0244], Apollo - University of Cambridge Repository, Paléocéanographie (PALEOCEAN), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), University of Freiburg [Freiburg], NSF OCE grantsNational Science Foundation (NSF) [EW9209-1JPC, V29-202], FCTFundacao para a Ciencia e a Tecnologia (FCT) [UID/Multi/04326/2019], European Project: 339108,EC:FP7:ERC,ERC-2013-ADG,ACCLIMATE(2014), Waelbroeck, Claire, Earth and Climate, Water and Climate Risk, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE), Laboratoire Géodynamique et enregistrement Sédimentaire (LGS), Géosciences Marines (GM), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Bjreknes Centre for Climate Research, Géochrononologie Traceurs Archéométrie (GEOTRAC), Chercheur indépendant, Massachusetts Institute of Technology (MIT), Unité de recherche Géosciences Marines (Ifremer) (GM), Hofstra University [Hempstead], Instituto Geológico y Minero de España (IGME), Laboratório Nacional de Energia e Geologia (LNEG), British Antarctic Survey (BAS), Natural Environment Research Council (NERC), Laboratoire Environnements Sédimentaires - Géosciences Marines (GM/LES), Aix Marseille Université (AMU), Laboratory of Ion Beam Physics, School of Earth and Ocean Sciences, Cardiff University, Cardiff, Leibniz Institute for Baltic Sea Research Warnemünde (IOW), University of St Andrews [Scotland], University of New Hampshire (UNH), École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL), Université d'Angers (UA)-Université de Nantes - Faculté des Sciences et des Techniques, Laboratoire Géosciences Océan (LGO), Université de Bretagne Sud (UBS)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Collège de France (CdF (institution))-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Vazquez Riveiros, Natalia [0000-0001-7513-153X], Hajdas, Irka [0000-0003-2373-2725], Arz, Helge [0000-0002-1997-1718], Gottschalk, Julia [0000-0002-0403-3059], Henderiks, Jorijntje [0000-0001-9486-6275], Hughen, Konrad [0000-0003-3201-934X], Mollenhauer, Gesine [0000-0001-5138-564X], Oppo, Delia [0000-0003-2946-5904], Thornalley, David [0000-0001-5885-5499], Voelker, Antje H. L. [0000-0001-6465-6023], Wary, Mélanie [0000-0001-5211-2168], and Weldeab, Syee [0000-0002-4829-5237]
- Subjects
Data Descriptor ,010504 meteorology & atmospheric sciences ,3705 Geology ,Palaeoclimate ,MILLENNIAL-SCALE CHANGES ,01 natural sciences ,Klimatforskning ,marine isotopic stage-3 ,Palaeoceanography ,Ice core ,sea-surface temperature ,SDG 13 - Climate Action ,DEEP-WATER ,ICE-CORES ,north-atlantic ,Glacial period ,lcsh:Science ,ComputingMilieux_MISCELLANEOUS ,GC ,0303 health sciences ,PRODUCTIVITY ,Statistics ,GREENLAND ,Computer Science Applications ,Oceanography ,[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/Climatology ,SEA-SURFACE TEMPERATURE ,[SDU.STU.ST]Sciences of the Universe [physics]/Earth Sciences/Stratigraphy ,GC Oceanography ,704/106/413 ,Statistics, Probability and Uncertainty ,data-descriptor ,Geology ,Information Systems ,Statistics and Probability ,Climate Research ,WESTERN TROPICAL ATLANTIC ,western tropical atlantic ,Climate change ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Library and Information Sciences ,millennial-scale changes ,Education ,glacial period ,03 medical and health sciences ,C-14 RESERVOIR AGES ,CHANGES ,Paleoclimatology ,G1 ,Deglaciation ,STAGE-3 ,productivity changes ,14. Life underwater ,SDG 14 - Life Below Water ,[SDU.STU.OC]Sciences of the Universe [physics]/Earth Sciences/Oceanography ,c-14 reservoir ages ,greenland ice-cores ,deep-water ,030304 developmental biology ,0105 earth and related environmental sciences ,13 Climate Action ,GLACIAL PERIOD ,Ocean current ,MARINE ISOTOPIC ,37 Earth Sciences ,G Geography (General) ,DAS ,3709 Physical Geography and Environmental Geoscience ,14 Life Below Water ,NORTH-ATLANTIC ,704/106/2738 ,Sea surface temperature ,13. Climate action ,[SDU]Sciences of the Universe [physics] ,Earth and Environmental Sciences ,Greenhouse gas ,Probability and Uncertainty ,lcsh:Q - Abstract
Rapid changes in ocean circulation and climate have been observed in marine-sediment and ice cores over the last glacial period and deglaciation, highlighting the non-linear character of the climate system and underlining the possibility of rapid climate shifts in response to anthropogenic greenhouse gas forcing. To date, these rapid changes in climate and ocean circulation are still not fully explained. One obstacle hindering progress in our understanding of the interactions between past ocean circulation and climate changes is the difficulty of accurately dating marine cores. Here, we present a set of 92 marine sediment cores from the Atlantic Ocean for which we have established age-depth models that are consistent with the Greenland GICC05 ice core chronology, and computed the associated dating uncertainties, using a new deposition modeling technique. This is the first set of consistently dated marine sediment cores enabling paleoclimate scientists to evaluate leads/lags between circulation and climate changes over vast regions of the Atlantic Ocean. Moreover, this data set is of direct use in paleoclimate modeling studies., Design Type(s)modeling and simulation objective • data collection and processing objective • source-based data analysis objectiveMeasurement Type(s)age-depth modelTechnology Type(s)computational modeling techniqueFactor Type(s)geographic location • depthSample Characteristic(s)Atlantic Ocean • marine sediment Machine-accessible metadata file describing the reported data (ISA-Tab format)
- Published
- 2019
- Full Text
- View/download PDF
9. Were last glacial climate events simultaneous between Greenland and western Europe?
- Author
-
J.A. Christen, Konrad A Hughen, Frank Preusser, Maarten Blaauw, Anders Svensson, Daniel Veres, Barbara Wohlfarth, and Linda Ampel
- Subjects
Climate events ,Ice core ,Climatology ,Western europe ,Ice caps ,Glacial period ,Historical geology and palaeontology ,Historisk geologi och paleontologi ,Geology ,Proxy (climate) - Abstract
During the last glacial period, several large abrupt climate fluctuations took place on the Greenland ice cap and elsewhere. Often these Dansgaard/Oeschger events are assumed to have been synchronous, and then used as tie-points to link chronologies between the proxy archives. However, if temporally separate events are lumped into one illusionary event, climatic interpretations of the tuned events will obviously be flawed. Here, we compare Dansgaard/Oeschger-type events in a well-dated record from south-eastern France with those in Greenland ice cores. Instead of assuming simultaneous climate events between both archives, we keep their age models independent. Even these well-dated archives possess large chronological uncertainties, that prevent us from inferring synchronous climate events at decadal to multi-centennial time scales. If possible, tuning of proxy archives should be avoided.
- Published
- 2018
- Full Text
- View/download PDF
10. Insights into Circum-Arctic sea ice variability from molecular geochemistry
- Author
-
Vera Stoynova, Konrad A Hughen, Anne de Vernal, and Timothy M. Shanahan
- Subjects
Archeology ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Sediment ,Geology ,010502 geochemistry & geophysics ,01 natural sciences ,Dinosterol ,Arctic ice pack ,Subarctic climate ,Proxy (climate) ,chemistry.chemical_compound ,Oceanography ,chemistry ,Arctic ,13. Climate action ,Sea ice ,14. Life underwater ,Marine productivity ,Ecology, Evolution, Behavior and Systematics ,0105 earth and related environmental sciences - Abstract
Geological records of past sea ice, such as those contained in Arctic marine sediments, offer an opportunity to strengthen our understanding of long-term sea ice variability, provided unambiguous paleo-sea ice proxies can be developed. One such recently proposed proxy is IP25, a highly branched isoprenoid alkene biosynthesized exclusively by sea-ice dwelling diatoms (Haslea spp.), which is well preserved in marine sediments and could be used to reconstruct past changes in spring sea-ice extent. However, little is known about regional-scale controls on IP25 production in sea ice, limiting its wider applicability as a paleo-sea-ice proxy. To address this issue we examined the distributions of IP25 and the marine productivity biomarkers dinosterol and brassicasterol in a suite of surface sediment samples distributed across the Arctic. We find a statistically significant, logarithmic relationship between IP25 and spring sea ice cover in sediment samples from arctic and subarctic sites in the Pacific (n = 96, R2 = 0.67, P
- Published
- 2013
- Full Text
- View/download PDF
11. CO2 and fire influence tropical ecosystem stability in response to climate change
- Author
-
William D. Gosling, Christopher A. Scholz, Clifford W. Heil, Konrad A Hughen, Jonathan T. Overpeck, Timothy M. Shanahan, Nicholas P. McKay, John A. Peck, John W. King, Charlotte Miller, and Paleoecology and Landscape Ecology (IBED, FNWI)
- Subjects
Ecological stability ,geography ,Multidisciplinary ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Ecology ,Climate change ,Tropics ,Tropical and subtropical grasslands, savannas, and shrublands ,Vegetation ,Woodland ,15. Life on land ,010502 geochemistry & geophysics ,01 natural sciences ,Grassland ,Article ,13. Climate action ,Environmental science ,Ecosystem ,0105 earth and related environmental sciences - Abstract
Interactions between climate, fire and CO2 are believed to play a crucial role in controlling the distributions of tropical woodlands and savannas, but our understanding of these processes is limited by the paucity of data from undisturbed tropical ecosystems. Here we use a 28,000-year integrated record of vegetation, climate and fire from West Africa to examine the role of these interactions on tropical ecosystem stability. We find that increased aridity between 28–15 kyr B.P. led to the widespread expansion of tropical grasslands, but that frequent fires and low CO2 played a crucial role in stabilizing these ecosystems, even as humidity changed. This resulted in an unstable ecosystem state, which transitioned abruptly from grassland to woodlands as gradual changes in CO2 and fire shifted the balance in favor of woody plants. Since then, high atmospheric CO2 has stabilized tropical forests by promoting woody plant growth, despite increased aridity. Our results indicate that the interactions between climate, CO2 and fire can make tropical ecosystems more resilient to change, but that these systems are dynamically unstable and potentially susceptible to abrupt shifts between woodland and grassland dominated states in the future.
- Published
- 2016
12. Late Quaternary environmental change in the interior South American tropics: new insight from leaf wax stable isotopes
- Author
-
Konrad A Hughen, Francis E. Mayle, Valier Galy, Bronwen S. Whitney, and Kyrstin L. Fornace
- Subjects
010504 meteorology & atmospheric sciences ,δ13C ,Orbital forcing ,F400 ,Climate change ,Last Glacial Maximum ,F800 ,Vegetation ,010502 geochemistry & geophysics ,01 natural sciences ,Geophysics ,Oceanography ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Deglaciation ,Glacial period ,Geology ,Holocene ,0105 earth and related environmental sciences - Abstract
Stable isotope analysis of leaf waxes in a sediment core from Laguna La Gaiba, a shallow lake located at the Bolivian margin of the Pantanal wetlands, provides new perspective on vegetation and climate change in the lowland interior tropics of South America over the past 40,000 years. The carbon isotopic compositions (δ13C) of long-chain n-alkanes reveal large shifts between C3- and C4-dominated vegetation communities since the last glacial period, consistent with landscape reconstructions generated with pollen data from the same sediment core. Leaf wax δ13C values during the last glacial period reflect an open landscape composed of C4 grasses and C3 herbs from 41–20 ka. A peak in C4 abundance during the Last Glacial Maximum (LGM, ∼21 ka) suggests drier or more seasonal conditions relative to the earlier glacial period, while the development of a C3-dominated forest community after 20 ka points to increased humidity during the last deglaciation. Within the Holocene, large changes in the abundance of C4 vegetation indicate a transition from drier or more seasonal conditions during the early/mid-Holocene to wetter conditions in the late Holocene coincident with increasing austral summer insolation. Strong negative correlations between leaf wax δ13C and δDδD values over the entire record indicate that the majority of variability in leaf wax δDδD at this site can be explained by variability in the magnitude of biosynthetic fractionation by different vegetation types rather than changes in meteoric water δDδD signatures. However, positive δDδD deviations from the observed δ13C–δDδD trends are consistent with more enriched source water and drier or more seasonal conditions during the early/mid-Holocene and LGM. Overall, our record adds to evidence of varying influence of glacial boundary conditions and orbital forcing on South American Summer Monsoon precipitation in different regions of the South American tropics. Moreover, the relationships between leaf wax stable isotopes and pollen data observed at this site underscore the complementary nature of pollen and leaf wax δ13C data for reconstructing past vegetation changes and the potentially large effects of such changes on leaf wax δDδD signatures.
- Published
- 2016
13. Decadally Resolved Lateglacial Radiocarbon Evidence from New Zealand Kauri – CORRIGENDUM
- Author
-
Konrad A Hughen, Linda M. Reynard, Gretel Boswijk, Pavla Fenwick, Luckas Wacker, Ulf Büntgen, Michael Friedrich, John R. Southon, Richard T. Jones, Frederick Reinig, Chris S. M. Turney, Richard A. Staff, Jonathan G. Palmer, Alan G. Hogg, Bernd Kromer, Amexandra Noronha, Christopher Bronk Ramsey, and Gerhard Helle
- Subjects
010506 paleontology ,Archeology ,Oceanography ,060102 archaeology ,law ,General Earth and Planetary Sciences ,0601 history and archaeology ,06 humanities and the arts ,Radiocarbon dating ,01 natural sciences ,Geology ,0105 earth and related environmental sciences ,law.invention - Published
- 2016
- Full Text
- View/download PDF
14. The Microbiome of the Red Sea Coral Stylophora pistillata Is Dominated by Tissue-Associated Endozoicomonas Bacteria
- Author
-
Konrad A Hughen, Areej S. Alsheikh-Hussain, Lauren K. Yum, Amy Apprill, Till Bayer, Matthew J. Neave, Christian R. Voolstra, Tracy J. Mincer, and Manuel Aranda
- Subjects
Coral ,Molecular Sequence Data ,Saudi Arabia ,Endozoicomonas ,Stylophora pistillata ,Polymerase Chain Reaction ,Applied Microbiology and Biotechnology ,RNA, Ribosomal, 16S ,Invertebrate Microbiology ,Animals ,Microbiome ,Symbiosis ,Author Correction ,Indian Ocean ,Phylogeny ,Ecology ,biology ,fungi ,technology, industry, and agriculture ,Sequence Analysis, DNA ,biochemical phenomena, metabolism, and nutrition ,Anthozoa ,biology.organism_classification ,RNA, Bacterial ,population characteristics ,Metagenome ,geographic locations ,Gammaproteobacteria ,Bacteria ,Food Science ,Biotechnology - Abstract
Endozoicomonas bacteria were found highly associated with the coral Stylophora pistillata , and these bacteria are also ubiquitously associated with diverse corals worldwide. Novel Endozoicomonas -specific probes revealed that Endozoicomonas bacteria were abundant in the endodermal tissues of S. pistillata and appear to have an intimate relationship with the coral.
- Published
- 2014
15. Late Holocene covariability of the southern westerlies and sea surface temperature in northern Chilean Patagonia
- Author
-
Silvio Pantoja, Konrad A Hughen, Julio Sepúlveda, and Sebastien Bertrand
- Subjects
Archeology ,Paleohydroclimatology ,Equator ,Fjord sediments ,Latitude ,Southern South America ,Chilean Patagonia ,Ice age ,medicine ,Southern westerlies ,Southern Hemisphere ,Ecology, Evolution, Behavior and Systematics ,Holocene ,Global and Planetary Change ,Paleohydrology ,Geology ,Westerlies ,15. Life on land ,Seasonality ,medicine.disease ,Sea surface temperature ,Oceanography ,13. Climate action ,Climatology ,Inorganic geochemistry - Abstract
The climate of Chilean Patagonia is strongly influenced by the southern westerlies, which control the amount and latitudinal distribution of precipitation in the southern Andes. In austral summer, the Southern Westerly Wind Belt (SWWB) is restricted to the high latitudes. It expands northward in winter, which results in a strong precipitation seasonality between similar to 35 and 45 degrees S. Here, we present a new precipitation seasonality proxy record from Quitralco fjord (46 degrees S), where relatively small latitudinal shifts of the SWWB result in large changes in precipitation seasonality. Our 1400 yr record is based on sedimentological and geochemical data obtained on a sediment core collected in front of a small river that drains the Patagonian Andes, which makes this site particularly sensitive to changes in river discharge. Our results indicate Fe/AI and Ti/Al values that are low between 600 and 1200 CE, increasing at 1200-1500 CE, and high between 1500 and 1950 CE. Increasing Fe/Al and Ti/Al values reflect a decrease in mean sediment grain-size from 30 to 20 mu m, which is interpreted as a decrease in seasonal floods resulting from an equatorward shift of the SWWB. Our results suggest that, compared to present-day conditions, the SWWB was located in a more poleward position before 1200 CE. It gradually shifted towards the equator in 1200-1500 CE, where it remained in a sustained position until 1950 CE. This pattern is consistent with most precipitation records from central and southern Chile. The comparison of our record with published regional sea surface temperature (SST) reconstructions for the late Holocene shows that equatorward shifts of the SWWB are systematically coeval with decreasing SSTs and vice versa, which resembles fluctuations over glacial-interglacial timescales. We argue that the synchronicity between SST and SWWB changes during the last 1400 years represents the response of the SWWB to temperature changes in the Southern Hemisphere.
- Published
- 2014
16. Links between tropical rainfall and North Atlantic climate during the last glacial period
- Author
-
Axel Timmermann, Ursula Röhl, Andreas Lückge, Yvonne Hamann, Carlo Laj, Mark A. Cane, Larry C. Peterson, Gaudenz Deplazes, Konrad A Hughen, Gerald H. Haug, Daniel M. Sigman, Department of Earth Sciences [Swiss Federal Institute of Technology - ETH Zürich] (D-ERDW), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami [Coral Gables], International Pacific Research Center (IPRC), School of Ocean and Earth Science and Technology (SOEST), University of Hawai‘i [Mānoa] (UHM)-University of Hawai‘i [Mānoa] (UHM), Department of Marine Chemistry and Geochemistry (WHOI), Woods Hole Oceanographic Institution (WHOI), Center for Marine Environmental Sciences [Bremen] (MARUM), Universität Bremen, Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Climat et Magnétisme (CLIMAG), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Lamont-Doherty Earth Observatory (LDEO), Columbia University [New York], Department of Geosciences [Princeton], Princeton University, DFG-Leibniz Center for Earth Surface Processes and Climate Studies, Universität Potsdam, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and University of Potsdam = Universität Potsdam
- Subjects
Monsoon of South Asia ,[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,010504 meteorology & atmospheric sciences ,Intertropical Convergence Zone ,Northern Hemisphere ,010502 geochemistry & geophysics ,01 natural sciences ,Indian summer ,Oceanography ,Atlantic Equatorial mode ,13. Climate action ,Paleoclimatology ,General Earth and Planetary Sciences ,Stadial ,Glacial period ,Institut für Geowissenschaften ,[SDU.ENVI]Sciences of the Universe [physics]/Continental interfaces, environment ,Geology ,0105 earth and related environmental sciences - Abstract
The last glacial period was marked by dramatic climate fluctuations. Sediment records from the Cariaco Basin and the Arabian Sea suggest that cooling in the North Atlantic region was tightly coupled with a southward displacement of the intertropical convergence zone and a weakening of the Indian summer monsoon. During the last glacial period, the North Atlantic regionexperienced pronounced, millennial-scale alternations between cold, stadial conditions and milder interstadial conditions—commonly referred to as Dansgaard–Oeschger oscillations—as well as periods of massive iceberg discharge known as Heinrich events1. Changes in Northern Hemisphere temperature, as recorded in Greenland2,3,4, are thought to have affected the location of the Atlantic intertropical convergence zone5,6 and the strength of the Indian summer monsoon7,8. Here we use high-resolution records of sediment colour—a measure of terrigenous versus biogenic content—from the Cariaco Basin off the coast of Venezuela and the Arabian Sea to assess teleconnections with the North Atlantic climate system during the last glacial period. The Cariaco record indicates that the intertropical convergence zone migrated seasonally over the site during mild stadial conditions, but was permanently displaced south of the basin during peak stadials and Heinrich events. In the Arabian Sea, we find evidence of a weak Indian summer monsoon during the stadial events. The tropical records show a more variable response to North Atlantic cooling than the Greenland temperature records. We therefore suggest that Greenland climate is especially sensitive to variations in the North Atlantic system—in particular sea-ice extent—whereas the intertropical convergence zone and Indian monsoon system respond primarily to variations in mean Northern Hemisphere temperature.
- Published
- 2013
- Full Text
- View/download PDF
17. Precipitation as the main driver of Neoglacial fluctuations of Gualasglacier, Northern Patagonian Icefield
- Author
-
Jan-Berend W Stuut, Frank Lamy, Carina B. Lange, Fernando Torrejón, Sebastien Bertrand, Konrad A Hughen, and Earth and Climate
- Subjects
010506 paleontology ,010504 meteorology & atmospheric sciences ,lcsh:Environmental protection ,Stratigraphy ,Ice field ,01 natural sciences ,RECONSTRUCTIONS ,Glacier mass balance ,lcsh:Environmental pollution ,CHRONOLOGY ,HOLOCENE ,lcsh:TD169-171.8 ,SDG 14 - Life Below Water ,Neoglaciation ,RECORDS ,lcsh:Environmental sciences ,Holocene ,0105 earth and related environmental sciences ,lcsh:GE1-350 ,Global and Planetary Change ,geography ,geography.geographical_feature_category ,Tidewater glacier cycle ,Paleontology ,SAN-RAFAEL GLACIER ,Glacier ,15. Life on land ,Glacier morphology ,LAKE ,CHILEAN PATAGONIA ,ICE-AGE MAXIMUM ,Oceanography ,13. Climate action ,Moraine ,Earth and Environmental Sciences ,SOUTHERN SOUTH-AMERICA ,lcsh:TD172-193.5 ,SEDIMENTS ,Geology - Abstract
Glaciers are frequently used as indicators of climate change. However, the link between past glacier fluctuations and climate variability is still highly debated. Here, we investigate the mid- to late-Holocene fluctuations of Gualas Glacier, one of the northernmost outlet glaciers of the Northern Patagonian Icefield, using a multi-proxy sedimentological and geochemical analysis of a 15 m long fjord sediment core from Golfo Elefantes, Chile, and historical documents from early Spanish explorers. Our results show that the core can be sub-divided into three main lithological units that were deposited under very different hydrodynamic conditions. Between 5400 and 4180 cal yr BP and after 750 cal yr BP, sedimentation in Golfo Elefantes was characterized by the rapid deposition of fine silt, most likely transported by fluvio-glacial processes. By contrast, the sediment deposited between 4130 and 850 cal yr BP is composed of poorly sorted sand that is free of shells. This interval is particularly marked by high magnetic susceptibility values and Zr concentrations, and likely reflects a major advance of Gualas glacier towards Golfo Elefantes during the Neoglaciation. Several thin silt layers observed in the upper part of the core are interpreted as secondary fluctuations of Gualas glacier during the Little Ice Age, in agreement with historical and dendrochronological data. Our interpretation of the Golfo Elefantes glaciomarine sediment record in terms of fluctuations of Gualas glacier is in excellent agreement with the glacier chronology proposed for the Southern Patagonian Icefield, which is based on terrestrial (moraine) deposits. By comparing our results with independent proxy records of precipitation and sea surface temperature, we suggest that the fluctuations of Gualas glacier during the last 5400 yr were mainly driven by changes in precipitation in the North Patagonian Andes.
- Published
- 2012
- Full Text
- View/download PDF
18. Debates over Palaeolithic chronology - the reliability of14C is confirmed
- Author
-
Bernd Kromer, Paula J. Reimer, Sahra Talamo, Konrad A Hughen, Talamo S., Hughen K.A., Kromer B., and Reimer P.J.
- Subjects
Archeology ,Paleontology ,Bone collagen ,law ,Reliability of radiocarbon dating ,Radiocarbon dating ,Middle-Upper Palaeolithic transition ,Radiocarbon calibration ,Geology ,Chronology ,law.invention - Abstract
The debate about the complex issues of human development during the Middle to Upper Palaeolithic transition period (45-35 ka BP) has been hampered by concerns about the reliability of the radiocarbon dating method. Large14C anomalies were postulated and radiocarbon dating was considered flawed. We show here that these issues are no longer relevant, because the large anomalies are artefacts beyond plausible physical limits for their magnitude. Previous inconsistencies between14C radiocarbon datasets have been resolved, and a new radiocarbon calibration curve, IntCal09 (Reimer et al., 2009), was created. Improved procedures for bone collagen extraction and charcoal pre-treatment generally result in older ages, consistent with independently dated time markers. © 2012 Elsevier Ltd.
- Published
- 2012
19. Blank Assessment for Ultra-Small Radiocarbon Samples: Chemical Extraction and Separation Versus AMS
- Author
-
Ellen R. M. Druffel, Nicholas J. Drenzek, Dachun Zhang, Susan E. Trumbore, Timothy I. Eglinton, Konrad A Hughen, John R. Southon, Lori A. Ziolkowski, Xiaomei Xu, and Guaciara M. Santos
- Subjects
010506 paleontology ,Archeology ,Carbon contamination ,Sample processing ,Analytical chemistry ,organic-carbon ,Fractionation ,system ,Combustion ,01 natural sciences ,Blank ,contamination ,Physical Sciences and Mathematics ,0601 history and archaeology ,Graphite ,fractionation ,california ,0105 earth and related environmental sciences ,delta-c-14 ,060102 archaeology ,Chemistry ,c-14 ,06 humanities and the arts ,Contamination ,KCCAMS/UCI facility ,General Earth and Planetary Sciences ,Leaching (metallurgy) - Abstract
The Keck Carbon Cycle AMS facility at the University of California, Irvine (KCCAMS/UCI) has developed protocols for analyzing radiocarbon in samples as small as ∼0.001 mg of carbon (C). Mass-balance background corrections for modern and 14C-dead carbon contamination (MC and DC, respectively) can be assessed by measuring 14C-free and modern standards, respectively, using the same sample processing techniques that are applied to unknown samples. This approach can be validated by measuring secondary standards of similar size and 14C composition to the unknown samples. Ordinary sample processing (such as ABA or leaching pretreatment, combustion/graphitization, and handling) introduces MC contamination of ∼0.6 ± 0.3 μg C, while DC is ∼0.3 ± 0.15 μg C. Today, the laboratory routinely analyzes graphite samples as small as 0.015 mg C for external submissions and ≅0.001 mg C for internal research activities with a precision of ∼1% for ∼0.010 mg C. However, when analyzing ultra-small samples isolated by a series of complex chemical and chromatographic methods (such as individual compounds), integrated procedural blanks may be far larger and more variable than those associated with combustion/graphitization alone. In some instances, the mass ratio of these blanks to the compounds of interest may be so high that the reported 14C results are meaningless. Thus, the abundance and variability of both MC and DC contamination encountered during ultra-small sample analysis must be carefully and thoroughly evaluated. Four case studies are presented to illustrate how extraction chemistry blanks are determined.
- Published
- 2010
20. Late glacial 14C ages from a floating, 1382-ring pine chronology
- Author
-
Bernd Kromer, K Felix Kaiser, Sabine Remmele, Konrad A Hughen, Sahra Talamo, Michael Friedrich, Matthias Schaub, Kromer B., Friedrich M., Hughen K.A., Kaiser F., Remmele S., Schaub M., and Talamo S.
- Subjects
010506 paleontology ,Archeology ,Varve ,060102 archaeology ,Pleistocene ,06 humanities and the arts ,01 natural sciences ,law.invention ,Paleontology ,Absolute dating ,law ,General Earth and Planetary Sciences ,0601 history and archaeology ,Glacial period ,Radiocarbon dating ,Younger Dryas ,Quaternary ,Geology ,0105 earth and related environmental sciences ,Chronology ,Late Glacial Tree-rings chronology radiocarbon dating - Abstract
We built a floating, 1382-ring pine chronology covering the radiocarbon age interval of 12,000 to 10,650 BP. Based on the strong rise of Δ14C at the onset of the Younger Dryas (YD) and wiggle-matching of the decadal-scale Δ14C fluctuations, we can anchor the floating chronology to the Cariaco varve chronology. We observe a marine reservoir correction higher than hitherto assumed for the Cariaco site, of up to 650 yr instead of 400 yr, for the full length of the comparison interval. The tree-ring Δ14C shows several strong fluctuations of short duration (a few decades) at 13,800; 13,600; and 13,350 cal BP. The amplitude of the strong Δ14C rise at the onset of the YD is about 40, whereas in the marine data set the signal appears stronger due to a re-adjustment of the marine mixed-layer Δ14C towards the atmospheric level.
- Published
- 2004
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.