246 results on '"Lihoreau, Mathieu"'
Search Results
2. A comparative analysis of foraging route development by bumblebees and honey bees
- Author
-
Buatois, Alexis, Mailly, Juliane, Dubois, Thibault, and Lihoreau, Mathieu
- Published
- 2024
- Full Text
- View/download PDF
3. Environmental exposure to metallic pollution impairs honey bee brain development and cognition
- Author
-
Monchanin, Coline, Drujont, Erwann, Le Roux, Gaël, Lösel, Philipp D., Barron, Andrew B., Devaud, Jean-Marc, Elger, Arnaud, and Lihoreau, Mathieu
- Published
- 2024
- Full Text
- View/download PDF
4. Flexible visual learning in nectar-foraging hornets
- Author
-
Lacombrade, Mathilde, Doblas-Bajo, Monica, Rocher, Naïs, Tourrain, Zoé, Navarro, Emmanuel, Lubat, Christian, Vogelweith, Fanny, Thiéry, Denis, and Lihoreau, Mathieu
- Published
- 2023
- Full Text
- View/download PDF
5. Honey bees cannot sense harmful concentrations of metal pollutants in food
- Author
-
Monchanin, Coline, Gabriela de Brito Sanchez, Maria, Lecouvreur, Loreleï, Boidard, Océane, Méry, Grégoire, Silvestre, Jérôme, Le Roux, Gaël, Baqué, David, Elger, Arnaud, Barron, Andrew B., Lihoreau, Mathieu, and Devaud, Jean-Marc
- Published
- 2022
- Full Text
- View/download PDF
6. Bumble bees strategically use ground level linear features in navigation
- Author
-
Brebner, Joanna S., Makinson, James C., Bates, Olivia K., Rossi, Natacha, Lim, Ka S., Dubois, Thibault, Gómez-Moracho, Tamara, Lihoreau, Mathieu, Chittka, Lars, and Woodgate, Joseph L.
- Published
- 2021
- Full Text
- View/download PDF
7. The miticide thymol in combination with trace levels of the neonicotinoid imidacloprid reduces visual learning performance in honey bees (Apis mellifera)
- Author
-
Colin, Théotime, Plath, Jenny A., Klein, Simon, Vine, Peta, Devaud, Jean-Marc, Lihoreau, Mathieu, Meikle, William G., and Barron, Andrew B.
- Published
- 2020
- Full Text
- View/download PDF
8. Automated monitoring of bee behaviour using connected hives: Towards a computational apidology
- Author
-
Marchal, Paul, Buatois, Alexis, Kraus, Stéphane, Klein, Simon, Gomez-Moracho, Tamara, and Lihoreau, Mathieu
- Published
- 2020
- Full Text
- View/download PDF
9. Poor adult nutrition impairs learning and memory in a parasitoid wasp
- Author
-
Kishani Farahani, Hossein, Moghadassi, Yasaman, Pierre, Jean-Sebastien, Kraus, Stéphane, and Lihoreau, Mathieu
- Published
- 2021
- Full Text
- View/download PDF
10. Social Network Analysis and Nutritional Behavior: An Integrated Modeling Approach.
- Author
-
Senior, Alistair M., Lihoreau, Mathieu, Buhl, Camille, Raubenheimer, David, and Simpson, Stephen J.
- Subjects
SOCIAL network analysis ,BEHAVIORAL assessment ,GROUP dynamics ,FORAGE ,SOCIAL networks ,SOCIAL influence ,FORAGING behavior - Abstract
Animals have evolved complex foraging strategies to obtain a nutritionally balanced diet and associated fitness benefits. Recent research combining state-space models of nutritional geometry with agent-based models (ABMs), show how nutrient targeted foraging behavior can also influence animal social interactions, ultimately affecting collective dynamics and group structures. Here we demonstrate how social network analyses can be integrated into such a modeling framework and provide a practical analytical tool to compare experimental results with theory. We illustrate our approach by examining the case of nutritionally mediated dominance hierarchies. First we show how nutritionally explicit ABMs that simulate the emergence of dominance hierarchies can be used to generate social networks. Importantly the structural properties of our simulated networks bear similarities to dominance networks of real animals (where conflicts are not always directly related to nutrition). Finally, we demonstrate how metrics from social network analyses can be used to predict the fitness of agents in these simulated competitive environments. Our results highlight the potential importance of nutritional mechanisms in shaping dominance interactions in a wide range of social and ecological contexts. Nutrition likely influences social interactions in many species, and yet a theoretical framework for exploring these effects is currently lacking. Combining social network analyses with computational models from nutritional ecology may bridge this divide, representing a pragmatic approach for generating theoretical predictions for nutritional experiments. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
11. Pesticide dosing must be guided by ecological principles
- Author
-
Colin, Théotime, Monchanin, Coline, Lihoreau, Mathieu, and Barron, Andrew B.
- Published
- 2020
- Full Text
- View/download PDF
12. Social nutrition: an emerging field in insect science
- Author
-
Lihoreau, Mathieu, Gómez-Moracho, Tamara, Pasquaretta, Cristian, Costa, James T, and Buhl, Camille
- Published
- 2018
- Full Text
- View/download PDF
13. A theoretical exploration of dietary collective medication in social insects
- Author
-
Poissonnier, Laure-Anne, Lihoreau, Mathieu, Gomez-Moracho, Tamara, Dussutour, Audrey, and Buhl, Camille
- Published
- 2018
- Full Text
- View/download PDF
14. Collective foraging in spatially complex nutritional environments
- Author
-
Lihoreau, Mathieu, Charleston, Michael A., Senior, Alistair M., Clissold, Fiona J., Raubenheimer, David, Simpson, Stephen J., and Buhl, Jerome
- Published
- 2017
15. Why Bees Are So Vulnerable to Environmental Stressors
- Author
-
Klein, Simon, Cabirol, Amélie, Devaud, Jean-Marc, Barron, Andrew B., and Lihoreau, Mathieu
- Published
- 2017
- Full Text
- View/download PDF
16. Chapter 4 - Navigation: Cognition, learning, and memory
- Author
-
Doussot, Charlotte, Purdy, John, and Lihoreau, Mathieu
- Published
- 2024
- Full Text
- View/download PDF
17. Chapter 5 - Energetics of foraging
- Author
-
Tait, Catherine and Lihoreau, Mathieu
- Published
- 2024
- Full Text
- View/download PDF
18. Honey bees increase their foraging performance and frequency of pollen trips through experience
- Author
-
Klein, Simon, Pasquaretta, Cristian, He, Xu Jiang, Perry, Clint, Søvik, Eirik, Devaud, Jean-Marc, Barron, Andrew B., and Lihoreau, Mathieu
- Published
- 2019
- Full Text
- View/download PDF
19. A spatial network analysis of resource partitioning between bumblebees foraging on artificial flowers in a flight cage
- Author
-
Pasquaretta, Cristian, Jeanson, Raphael, Pansanel, Jerome, Raine, Nigel E., Chittka, Lars, and Lihoreau, Mathieu
- Published
- 2019
- Full Text
- View/download PDF
20. Efficient visual learning by bumble bees in virtual‐reality conditions: Size does not matter.
- Author
-
Lafon, Gregory, Paoli, Marco, Paffhausen, Benjamin H., Sanchez, Gabriela de Brito, Lihoreau, Mathieu, Avarguès‐Weber, Aurore, and Giurfa, Martin
- Subjects
VISUAL learning ,BUMBLEBEES ,BOMBUS terrestris ,HONEYBEES ,REINFORCEMENT (Psychology) ,COLOR vision ,COGNITIVE ability - Abstract
Recent developments allowed establishing virtual‐reality (VR) setups to study multiple aspects of visual learning in honey bees under controlled experimental conditions. Here, we adopted a VR environment to investigate the visual learning in the buff‐tailed bumble bee Bombus terrestris. Based on responses to appetitive and aversive reinforcements used for conditioning, we show that bumble bees had the proper appetitive motivation to engage in the VR experiments and that they learned efficiently elemental color discriminations. In doing so, they reduced the latency to make a choice, increased the proportion of direct paths toward the virtual stimuli and walked faster toward them. Performance in a short‐term retention test showed that bumble bees chose and fixated longer on the correct stimulus in the absence of reinforcement. Body size and weight, although variable across individuals, did not affect cognitive performances and had a mild impact on motor performances. Overall, we show that bumble bees are suitable experimental subjects for experiments on visual learning under VR conditions, which opens important perspectives for invasive studies on the neural and molecular bases of such learning given the robustness of these insects and the accessibility of their brain. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
21. Natural variability in bee brain size and symmetry revealed by micro-CT imaging and deep learning.
- Author
-
Lösel, Philipp D., Monchanin, Coline, Lebrun, Renaud, Jayme, Alejandra, Relle, Jacob J., Devaud, Jean-Marc, Heuveline, Vincent, and Lihoreau, Mathieu
- Subjects
SIZE of brain ,DEEP learning ,X-ray computed microtomography ,ANIMAL behavior ,HONEYBEES ,BEES ,BIOLOGICAL evolution ,ARTIFICIAL intelligence - Abstract
Analysing large numbers of brain samples can reveal minor, but statistically and biologically relevant variations in brain morphology that provide critical insights into animal behaviour, ecology and evolution. So far, however, such analyses have required extensive manual effort, which considerably limits the scope for comparative research. Here we used micro-CT imaging and deep learning to perform automated analyses of 3D image data from 187 honey bee and bumblebee brains. We revealed strong inter-individual variations in total brain size that are consistent across colonies and species, and may underpin behavioural variability central to complex social organisations. In addition, the bumblebee dataset showed a significant level of lateralization in optic and antennal lobes, providing a potential explanation for reported variations in visual and olfactory learning. Our fast, robust and user-friendly approach holds considerable promises for carrying out large-scale quantitative neuroanatomical comparisons across a wider range of animals. Ultimately, this will help address fundamental unresolved questions related to the evolution of animal brains and cognition. Author summary: Bees, despite their small brains, possess a rich behavioural repertoire and show significant variations among individuals. In social bees this variability is key to the division of labour that maintains their complex social organizations and has been linked to the maturation of specific brain areas as a result of development and foraging experience. This makes bees an ideal model for understanding insect cognitive functions and the neural mechanisms that underlie them. However, due to the scarcity of comparative data, the relationship between brain neuro-architecture and behavioural variance remains unclear. To address this problem, we developed an AI-based approach for automated analysis of three-dimensional brain images and analysed an unprecedentedly large dataset of honey bee and bumblebee brains. Through this process, we were able to identify previously undescribed anatomical features that correlate with known behaviours, supporting recent evidence of lateralized behaviour in foraging and pollination. Our method is opensource, easily accessible online, user-friendly, fast, accurate, and robust to different species, enabling large-scale comparative analyses across the animal kingdom. This includes investigating the impact of external stressors such as environmental pollution and climate change on cognitive development, helping us understand the mechanisms underlying the cognitive abilities of animals and the implications for their survival and adaptation. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
22. An Overlooked Consequence of Dietary Mixing: A Varied Diet Reduces Interindividual Variance in Fitness
- Author
-
Senior, Alistair M., Nakagawa, Shinichi, Lihoreau, Mathieu, Simpson, Stephen J., and Raubenheimer, David
- Published
- 2015
- Full Text
- View/download PDF
23. Modelling nutrition across organizational levels: From individuals to superorganisms
- Author
-
Lihoreau, Mathieu, Buhl, Camille, Charleston, Michael A., Sword, Gregory A., Raubenheimer, David, and Simpson, Stephen J.
- Published
- 2014
- Full Text
- View/download PDF
24. Considering variation in bee responses to stressors can reveal potential for resilience.
- Author
-
Cabirol, Amélie, Gómez‐Moracho, Tamara, Monchanin, Coline, Pasquaretta, Cristian, and Lihoreau, Mathieu
- Subjects
BEES ,APIS cerana ,PHENOTYPIC plasticity ,COGNITIVE ability ,HONEYBEES ,COGNITIVE testing - Abstract
Copyright of Journal of Applied Ecology is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2023
- Full Text
- View/download PDF
25. Nutrigonometry I: Using Right-Angle Triangles to Quantify Nutritional Trade-Offs in Performance Landscapes.
- Author
-
Morimoto, Juliano, Conceição, Pedro, Mirth, Christen, and Lihoreau, Mathieu
- Subjects
LANDSCAPES ,TRIANGLES ,BIOLOGICAL evolution ,ANIMAL nutrition ,BIOLOGICAL fitness ,NUTRITIONAL requirements - Abstract
Copyright of American Naturalist is the property of University of Chicago and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2023
- Full Text
- View/download PDF
26. Intraspecific Variability in Proteomic Profiles and Biological Activities of the Honey Bee Hemolymph.
- Author
-
Elfar, Salma A., Bahgat, Iman M., Shebl, Mohamed A., Lihoreau, Mathieu, and Tawfik, Mohamed M.
- Subjects
POLLINATORS ,HONEYBEES ,POLLINATION ,HEMOLYMPH ,PROTEOMICS ,BEES ,IMMUNE response ,FOOD security - Abstract
Simple Summary: Insect hemolymph is equivalent to blood in higher vertebrates. It is the main site for immune responses, mediates nutrient transportation to organs and tissues, and has antimicrobial and antioxidant properties. Hemolymph can thus provide information about the health status of an insect. Here we report intraspecific variation in hemolymph properties of Western honey bees Apis mellifera sampled in four locations providing different diets across Egypt. Bees that had access to a rich and varied diet had higher protein concentrations and levels of biological activities in their hemolymph than bees that were only fed sucrose solution. This suggests hemolymph analyses could be used as a powerful indicator for monitoring bee populations, with the aim of improving their health and pollination efficiency. Pollinator declines have raised major concerns for the maintenance of biodiversity and food security, calling for a better understanding of environmental factors that affect their health. Here we used hemolymph analysis to monitor the health status of Western honey bees Apis mellifera. We evaluated the intraspecific proteomic variations and key biological activities of the hemolymph of bees collected from four Egyptian localities characterized by different food diversities and abundances. Overall, the lowest protein concentrations and the weakest biological activities (cytotoxicity, antimicrobial and antioxidant properties) were recorded in the hemolymph of bees artificially fed sucrose solution and no pollen. By contrast, the highest protein concentrations and biological activities were recorded in bees that had the opportunity to feed on various natural resources. While future studies should expand comparisons to honey bee populations exposed to more different diets and localities, our results suggest hemolymph samples can be used as reliable indicators of bee nutrition. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
27. Trade-off between travel distance and prioritization of high-reward sites in traplining bumblebees
- Author
-
Lihoreau, Mathieu, Chittka, Lars, and Raine, Nigel E.
- Published
- 2011
- Full Text
- View/download PDF
28. Travel Optimization by Foraging Bumblebees through Readjustments of Traplines after Discovery of New Feeding Locations
- Author
-
Lihoreau, Mathieu, Chittka, Lars, and Raine, Nigel E.
- Published
- 2010
- Full Text
- View/download PDF
29. Collective foraging decision in a gregarious insect
- Author
-
Lihoreau, Mathieu, Deneubourg, Jean-Louis, and Rivault, Colette
- Published
- 2010
- Full Text
- View/download PDF
30. ERC project Bee-Move: 'How do bees move across the landscapes?'
- Author
-
Lihoreau, Mathieu, Dore, Alexandre, Henry, Dominique, Aubert, Hervé, Centre de Recherches sur la Cognition Animale - UMR5169 (CRCA), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre de Biologie Intégrative (CBI), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT), Équipe MIcro et Nanosystèmes pour les Communications sans fil (LAAS-MINC), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), and ANR-16-CE02-0002,POLLINET,Structure et efficacité des réseaux de pollinisation dans des environnements changeants(2016)
- Subjects
[SCCO.NEUR]Cognitive science/Neuroscience - Abstract
International audience; How do bees manage to locate flowers? And how do they move between them?
- Published
- 2021
- Full Text
- View/download PDF
31. LoRaWAN Relaying: Push the Cell Boundaries (Short Paper)
- Author
-
Lumet, Edouard, Le Floch, Antonin, Kacimi, Rahim, Lihoreau, Mathieu, Beylot, André-Luc, Réseaux, Mobiles, Embarqués, Sans fil, Satellites (IRIT-RMESS), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Temps Réel dans les Réseaux et Systèmes (IRIT-T2RS), Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut des sciences du cerveau de Toulouse. (ISCT), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J)-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and Projet ADI SASHA
- Subjects
[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI] ,Data Extraction Rate ,Relaying ,Experiments ,Energy-Efficiency ,LoRaWAN - Abstract
International audience; Although LoRa modulation is known for its robustness allowing devices to communicate kilometers away, it suffers from coverage issues, especially where density of gateways is low or in dense urban areas. However, a simple 2-hop LoRaWAN communication can seamlessly extend the network coverage and even improve both data extraction rate (DER) and energy consumption. Experiments in this paper figure out cases under non line of sight (NLoS) conditions where relaying performs better. Regarding the exponential increase of airtime with the spreading factor (SF), as soon as a 2-hop SF7 link allows a better DER as a single-hop SF8 link, it becomes more attractive to use a relay. Indeed, energy consumption is linked to the airtime - or the amount of time to send a frame - explaining the energy efficiency with the 2-hop relaying protocol. To verify this assert, LoRa network coverage with a testbed in urban environments is first compared. Then, simulations help to study energy consumption according to the case study. Results prove that relaying effectively gives better results under NLoS conditions, particularly in dense areas, by improving the DER. It also highlights the limits of LoRa in urban areas where the DER can be under 0.5 using SF12 and with less than a kilometer range.
- Published
- 2021
- Full Text
- View/download PDF
32. A non-invasive radar system for automated behavioural tracking: application to sheep
- Author
-
Lihoreau Mathieu, Jean-François Bompard, Alain Boissy, Mathieu Lihoreau, Hervé Aubert, Dominique Henry, Mathieu Bonneau, D. Hazard, Edmond Ricard, Alexandre Dore, Cristian Pasquaretta, Équipe MIcro et Nanosystèmes pour les Communications sans fil (LAAS-MINC), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Centre de Recherches sur la Cognition Animale - UMR5169 (CRCA), Institut des sciences du cerveau de Toulouse. (ISCT), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre de Biologie Intégrative (CBI), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Génétique Physiologie et Systèmes d'Elevage (GenPhySE ), Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Unité Mixte de Recherche sur les Herbivores - UMR 1213 (UMRH), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), ANR-20-ERC8-0004,BEE-MOVE,Pollination ecology: how do bees move across the landscape and fashion plant reproduction?(2020), ANR-19-CE37-0024,3DNaviBee,How do bees solve navigational challenges in 3D?(2019), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut des sciences du cerveau de Toulouse. (ISCT), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J)-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Université Toulouse Capitole (UT Capitole), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse Capitole (UT Capitole), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre de Biologie Intégrative (CBI), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Toulouse Mind & Brain Institut (TMBI), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Mathieu, Lihoreau, Pollination ecology: how do bees move across the landscape and fashion plant reproduction? - - BEE-MOVE2020 - ANR-20-ERC8-0004 - T-ERC - VALID, How do bees solve navigational challenges in 3D? - - 3DNaviBee2019 - ANR-19-CE37-0024 - AAPG2019 - VALID, Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre de Biologie Intégrative (CBI), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Toulouse Mind & Brain Institut (TMBI), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-École nationale supérieure agronomique de Toulouse (ENSAT), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
Ovis aries ,Computer science ,computational ethology ,[SDV]Life Sciences [q-bio] ,Real-time computing ,corridor test ,behavioural phenotyping ,02 engineering and technology ,Ethology ,Tracking (particle physics) ,Radar systems ,Field (computer science) ,law.invention ,03 medical and health sciences ,[SCCO]Cognitive science ,law ,0202 electrical engineering, electronic engineering, information engineering ,Radar ,radar tracking ,030304 developmental biology ,0303 health sciences ,business.industry ,Estimator ,020206 networking & telecommunications ,Tracking system ,[SCCO] Cognitive science ,Power (physics) ,business - Abstract
Automated quantification of the behaviour of freely moving animals is increasingly needed in ethology, ecology, genetics and evolution. State-of-the-art approaches often require tags to identify animals, high computational power for data collection and processing, and are sensitive to environmental conditions, which limits their large-scale utilisation. Here we introduce a new automated tracking system based on millimetre-wave radars for real time robust and high precision monitoring of untagged animals. To validate our system, we tracked 64 sheep in a standard indoor behavioural test used for genetic selection. First, we show that the proposed radar application is faster and more accurate than conventional video and infrared tracking systems. Next, we illustrate how new behavioural estimators can be derived from the radar data to assess personality traits in sheep for behavioural phenotyping. Finally, we demonstrate that radars can be used for movement tracking at larger spatial scales, in the field, by adjusting operating frequency and radiated electromagnetic power. Millimetre-wave radars thus hold considerable promises for high-throughput recording of the behaviour of animals with various sizes and locomotor modes, in different types of environments.
- Published
- 2021
33. Modeling bee movement shows how a perceptual masking effect can influence flower discovery.
- Author
-
Morán, Ana, Lihoreau, Mathieu, Pérez Escudero, Alfonso, and Gautrais, Jacques
- Subjects
- *
POLLINATORS , *POLLINATION , *POLLINATION by bees , *BEES , *PLANT reproduction , *FLOWER arrangements , *SPATIAL arrangement , *FORAGE plants , *FLOWERS - Abstract
Understanding how pollinators move across space is key to understanding plant mating patterns. Bees are typically assumed to search for flowers randomly or using simple movement rules, so that the probability of discovering a flower should primarily depend on its distance to the nest. However, experimental work shows this is not always the case. Here, we explored the influence of flower size and density on their probability of being discovered by bees by developing a movement model of central place foraging bees, based on experimental data collected on bumblebees. Our model produces realistic bee trajectories by taking into account the autocorrelation of the bee's angular speed, the attraction to the nest (homing), and a gaussian noise. Simulations revealed a « masking effect » that reduces the detection of flowers close to another, with potential far reaching consequences on plant-pollinator interactions. At the plant level, flowers distant to the nest were more often discovered by bees in low density environments. At the bee colony level, foragers found more flowers when they were small and at medium densities. Our results indicate that the processes of search and discovery of resources are potentially more complex than usually assumed, and question the importance of resource distribution and abundance on bee foraging success and plant pollination. Author summary: Understanding how pollinators move in space is key to understand plant reproduction and its consequences on terrestrial ecosystems. Current models assume simple movement rules that predict flowers are more likely to be visited—and hence pollinated—the closer they are to the pollinators' nest. Here we developed an explicit movement model that incorporates realistic features of bumblebee behaviour, and calibrated it with experimental data collected in naturalistic conditions. Our model shows that the probability to visit a flower does not only depend on its position, but also on the position of other flowers around that may mask it from the forager. This perceptual masking effect means that pollination efficiency depends on the density and spatial arrangement of flowers around the pollinators' nest, often in counter-intuitive ways. Taking these effects into account may be key for improving practical actions in precision pollination and pollinator conservation. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
34. German cockroach males maximize their inclusive fitness by avoiding mating with kin
- Author
-
Lihoreau, Mathieu and Rivault, Colette
- Published
- 2010
- Full Text
- View/download PDF
35. Current permissible levels of metal pollutants harm terrestrial invertebrates
- Author
-
Monchanin, Coline, Devaud, Jean-Marc, Barron, Andrew B., and Lihoreau, Mathieu
- Published
- 2021
- Full Text
- View/download PDF
36. Inbreeding and the evolution of sociality in arthropods
- Author
-
Tabadkani, Seyed Mohammad, Nozari, Jamasb, and Lihoreau, Mathieu
- Published
- 2012
- Full Text
- View/download PDF
37. Tactile stimuli trigger group effects in cockroach aggregations
- Author
-
Lihoreau, Mathieu and Rivault, Colette
- Published
- 2008
- Full Text
- View/download PDF
38. What a Bee Knows: Exploring the Thoughts, Memories, and Personalities of Bees.
- Author
-
Lihoreau, Mathieu
- Subjects
- *
POLLINATORS , *HONEYBEES , *BEES , *PERSONALITY , *BEE behavior , *HONEY plants , *DUCT tape , *SEXUAL selection - Abstract
"What a Bee Knows: Exploring the Thoughts, Memories, and Personalities of Bees" by Stephen Buchmann is a book that delves into the fascinating world of bees. Unlike other bee books, this one is written by a pollination ecologist who provides a unique perspective on bees and their interactions with their environment. The author takes readers on a journey through recent discoveries in bee behavior and cognition, highlighting the diverse nature of bees and their intriguing habits. The book also touches on the decline of bees and the importance of protecting these vital pollinators. [Extracted from the article]
- Published
- 2024
- Full Text
- View/download PDF
39. Patterns of food transfer in yellow-legged hornet nests revealed by heavy metal tracers.
- Author
-
Poidatz, Juliette, Lihoreau, Mathieu, and Thiéry, Denis
- Subjects
- *
HEAVY metals , *HORNETS , *INSECT societies , *CESIUM , *RUBIDIUM - Abstract
A social insect colony can be seen as a superorganism in which nutrient collection and regulation is achieved through the collective action of workers. Here we investigated how workers of the yellow-legged hornet Vespa velutina, an invasive predator of honeybees and other insects in Europe, distribute the incoming food within their nests. Food transfer among colonies differing in composition of developmental stage and abundance of different castes was compared by feeding workers with protein and carbohydrate solutions labelled with non-radioactive heavy metals (rubidium and caesium) and measuring the heavy metal tracers’ occurrence in adults and larvae in the nests after 24h. Caesium labelled sucrose was more abundant in the adults (workers, males and the queen), while rubidium labelled proteins were more abundant in the larvae. The lightest larvae received more protein than the others. The lightest workers received more carbohydrate, and the largest workers more protein. Even if this work is exploratory, our results considerably improve our knowledge of hornet biology by showing how food distribution patterns may vary throughout the development cycle of colonies. They also provide new perspectives to understand how specific nutrients are distributed in nests, and may help develop Trojan horses biological control strategies based on food distribution. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
40. Radars à ondes millimétriques pour l'enregistrement automatique de l'activité posturale des truies
- Author
-
Dore, Alexandre, Lihoreau, Mathieu, Billon, Yvon, Ravon, Laure, Bailly, Jean, Bompa, Jean-François, Ricard, Edmond, Aubert, Hervé, Henry, Dominique, Canario, Laurianne, Équipe MIcro et Nanosystèmes pour les Communications sans fil (LAAS-MINC), Laboratoire d'analyse et d'architecture des systèmes (LAAS), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut des sciences du cerveau de Toulouse. (ISCT), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J)-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Unité Expérimentale Elevages Porcins Innovants (GenESI), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Génétique Physiologie et Systèmes d'Elevage (GenPhySE ), Ecole Nationale Vétérinaire de Toulouse (ENVT), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-École nationale supérieure agronomique de Toulouse [ENSAT]-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), European Association for Animal Production, Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT), Centre de Recherches sur la Cognition Animale - UMR5169 (CRCA), Institut des sciences du cerveau de Toulouse. (ISCT), Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre de Biologie Intégrative (CBI), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université de Toulouse (UT)-École nationale supérieure agronomique de Toulouse (ENSAT), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Sow ,Truie ,[INFO.INFO-NE]Computer Science [cs]/Neural and Evolutionary Computing [cs.NE] ,[INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA] ,ComputingMilieux_MISCELLANEOUS ,[INFO.INFO-AI]Computer Science [cs]/Artificial Intelligence [cs.AI] - Abstract
Visio-conférence; International audience
- Published
- 2020
41. A model of resource partitioning between foraging bees
- Author
-
Dubois, Thibault, Pasquaretta, Cristian, Barron, Andrew B., Gautrais, Jacques, Lihoreau, Mathieu, Centre de Recherches sur la Cognition Animale (CRCA), Centre de Biologie Intégrative (CBI), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut des sciences du cerveau de Toulouse. (ISCT), Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse - Jean Jaurès (UT2J)-CHU Toulouse [Toulouse]-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Department of Biological Sciences, Macquarie University, Macquarie University, Department of Biological Sciences, Centre de Recherches sur la Cognition Animale - UMR5169 (CRCA), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre de Biologie Intégrative (CBI), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Toulouse Mind & Brain Institut (TMBI), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées, and Gautrais, Jacques
- Subjects
[SDV] Life Sciences [q-bio] ,bumblebees ,vector navigation ,[SDV]Life Sciences [q-bio] ,trapline foraging ,competition ,resource partitioning - Abstract
International audience; Central place foraging pollinators tend to develop multi-destination routes (traplines) to exploit several patchily distributed plant resources. While the formation of traplines by individual pollinators has been studied in details, how populations of individuals exploit resources in a common area is an open question difficult to address experimentally. Here we explored conditions for the emergence of resource partitioning among traplining bees using agent-based models built from experimental data of bumblebees foraging on artificial flowers. In the models, bees learn to develop routes as a consequence of feedback loops that change their probabilities of moving between flowers. While a positive reinforcement of route segments leading to rewarding flowers is sufficient for the emergence of resource partitioning when flowers are evenly distributed, a negative reinforcement of route segments leading to unrewarding flowers is necessary when flowers are patchily distributed. In these more complex environments, the negative experiences of individual bees favour the spatial segregation of foragers and high levels of collective foraging efficiency.
- Published
- 2020
- Full Text
- View/download PDF
42. Chapter One - Putting the ecology back into insect cognition research
- Author
-
Lihoreau, Mathieu, Dubois, Thibault, Gomez-Moracho, Tamara, Kraus, Stéphane, Monchanin, Coline, and Pasquaretta, Cristian
- Published
- 2019
- Full Text
- View/download PDF
43. Kin recognition via cuticular hydrocarbons shapes cockroach social life
- Author
-
Lihoreau, Mathieu and Rivault, Colette
- Published
- 2009
- Full Text
- View/download PDF
44. Aggregation
- Author
-
Fouché, Quentin, Charabidzé, Damien, Lihoreau, Mathieu, and Mathieu, Lihoreau
- Subjects
[SDE] Environmental Sciences ,[SDV] Life Sciences [q-bio] ,[SCCO] Cognitive science ,ComputingMilieux_MISCELLANEOUS - Published
- 2019
45. Kin recognition and incest avoidance in a group-living insect
- Author
-
Lihoreau, Mathieu, Zimmer, Cédric, and Rivault, Colette
- Published
- 2007
46. A model of resource partitioning between foraging bees based on learning.
- Author
-
Dubois, Thibault, Pasquaretta, Cristian, Barron, Andrew B., Gautrais, Jacques, and Lihoreau, Mathieu
- Subjects
POLLINATION by bees ,RENEWABLE natural resources ,BEES ,POLLINATORS ,BUMBLEBEES ,NECTAR ,OPEN-ended questions - Abstract
Central place foraging pollinators tend to develop multi-destination routes (traplines) to exploit patchily distributed plant resources. While the formation of traplines by individual pollinators has been studied in detail, how populations of foragers use resources in a common area is an open question, difficult to address experimentally. We explored conditions for the emergence of resource partitioning among traplining bees using agent-based models built from experimental data of bumblebees foraging on artificial flowers. In the models, bees learn to develop routes as a consequence of feedback loops that change their probabilities of moving between flowers. While a positive reinforcement of movements leading to rewarding flowers is sufficient for the emergence of resource partitioning when flowers are evenly distributed, the addition of a negative reinforcement of movements leading to unrewarding flowers is necessary when flowers are patchily distributed. In environments with more complex spatial structures, the negative experiences of individual bees on flowers favour spatial segregation and efficient collective foraging. Our study fills a major gap in modelling pollinator behaviour and constitutes a unique tool to guide future experimental programs. Author summary: Pollinating animals, like bees, face the challenge of maximising their returns on plant resources while minimising their foraging costs. Observations show bees establish idiosyncratic foraging routes (traplines) to visit familiar plants using short paths. This is an effective strategy for collecting pollen and nectar that are dispersed and renewable resources. Intriguingly, different bees seem to establish non-overlapping traplines, which aids in partitioning resources. So far, however, how bees establish these foraging strategies is a mystery. It seems unfeasible for them to be able to negotiate with competing foragers. Here we present a simple computational model derived from empirical observations suggesting bees can develop efficient routes between flowers while minimizing spatial overlaps with competitors based only on their history of reinforcement in a floral array. In the model, bees learn to return to flowers where they found nectar and avoid flowers that were found empty. Numerical simulations of our model predict the emergence of resource partitioning between pairs of bees under various conditions. This suggests a simple strategy to promote efficient foraging among competing agents on a renewable resource that could apply to many different pollinating animals. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
47. Gut Microbiota Modifies Olfactory-Guided Microbial Preferences and Foraging Decisions in Drosophila
- Author
-
Wong, Adam Chun-Nin, Wang, Qiao-Ping, Morimoto, Juliano, Senior, Alistair M., Lihoreau, Mathieu, Neely, G. Gregory, Simpson, Stephen J., and Ponton, Fleur
- Published
- 2017
- Full Text
- View/download PDF
48. Contributors
- Author
-
Brunet, Johanne, Chakrabarti, Priyadarshini, Doussot, Charlotte, Drummond, Francis A., Lihoreau, Mathieu, Minahan, Danny, Nearman, Anthony, Purdy, John, Rueppell, Olav, Sagili, Ramesh R., Tait, Catherine, vanEngelsdorp, Dennis, and Walton, Alexander
- Published
- 2024
- Full Text
- View/download PDF
49. Animal social networks: Towards an integrative framework embedding social interactions, space and time.
- Author
-
Sosa, Sebastian, Jacoby, David M. P., Lihoreau, Mathieu, and Sueur, Cédric
- Subjects
SOCIAL networks ,SOCIAL interaction ,COMPARATIVE biology ,SOCIAL ecology ,ANIMAL ecology ,FALSE positive error ,ANIMAL societies - Abstract
Social groups take a myriad of forms, reflecting the countless different ways in which animals can interact and associate (Wilson, 2000). The Joint Special Feature in I Methods in Ecology and Evolution i and the I Journal of Animal Ecology i is a celebration of research by animal social network scientists, introducing novel methods and questions pertaining to Animal Social Network Analysis (ASNA). ANIMAL NETWORKS UNDER DIFFERENT ENVIRONMENTS Social structure represents the most plastic aspect of animal societies as individuals can, through social interactions, regulate conflicts (Aureli & de Waal, 2000), create affiliative bonds (De Waal & Roosmalen, 1979), cooperate (Seyfarth & Cheney, 2012), transmit information and learn (Hoppitt & Laland, 2013). [Extracted from the article]
- Published
- 2021
- Full Text
- View/download PDF
50. Analysis of temporal patterns in animal movement networks.
- Author
-
Pasquaretta, Cristian, Dubois, Thibault, Gomez‐Moracho, Tamara, Delepoulle, Virginie P., Le Loc'h, Guillaume, Heeb, Philipp, Lihoreau, Mathieu, and Soto, David
- Subjects
HOME range (Animal geography) ,ANIMAL behavior ,GLOBAL Positioning System ,ANIMAL radio tracking ,TIME series analysis ,ROE deer - Abstract
Understanding how animal movements change across space and time is a fundamental question in ecology. While classical analyses of trajectories give insightful descriptors of spatial patterns, a satisfying method for assessing the temporal succession of such patterns is lacking.Network analyses are increasingly used to capture properties of complex animal trajectories in simple graphical metrics. Here, building on this approach, we introduce a method that incorporates time into movement network analyses based on temporal sequences of network motifs.We illustrate our method using four example trajectories (bumblebee, black kite, roe deer, wolf) collected with different technologies (harmonic radar, platform terminal transmitter, global positioning system). First, we transformed each trajectory into a spatial network by defining the animal's coordinates as nodes and movements in between as edges. Second, we extracted temporal sequences of network motifs from each movement network and compared the resulting behavioural profiles to topological features of the original trajectory. Finally, we compared each sequence of motifs with simulated Brownian and Lévy random motions to statistically determine differences between trajectories and classical movement models.Our analysis of the temporal sequences of network motifs in individual movement networks revealed successions of spatial patterns corresponding to changes in behavioural modes that can be attributed to specific spatio‐temporal events of each animal trajectory. Future applications of our method to multi‐layered movement and social network analysis yield considerable promises for extending the study of complex movement patterns at the population level. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.