1. Chlorine bridge bond-enabled binuclear copper complex for electrocatalyzing lithium–sulfur reactions
- Author
-
Qin Yang, Jinyan Cai, Guanwu Li, Runhua Gao, Zhiyuan Han, Jingjing Han, Dong Liu, Lixian Song, Zixiong Shi, Dong Wang, Gongming Wang, Weitao Zheng, Guangmin Zhou, and Yingze Song
- Subjects
Science - Abstract
Abstract Engineering atom-scale sites are crucial to the mitigation of polysulfide shuttle, promotion of sulfur redox, and regulation of lithium deposition in lithium–sulfur batteries. Herein, a homonuclear copper dual-atom catalyst with a proximal distance of 3.5 Å is developed for lithium–sulfur batteries, wherein two adjacent copper atoms are linked by a pair of symmetrical chlorine bridge bonds. Benefiting from the proximal copper atoms and their unique coordination, the copper dual-atom catalyst with the increased active interface concentration synchronously guide the evolutions of sulfur and lithium species. Such a delicate design breaks through the activity limitation of mononuclear metal center and represents a catalyst concept for lithium–sulfur battery realm. Therefore, a remarkable areal capacity of 7.8 mA h cm−2 is achieved under the scenario of sulfur content of 60 wt.%, mass loading of 7.7 mg cm−2 and electrolyte dosage of 4.8 μL mg−1.
- Published
- 2024
- Full Text
- View/download PDF