28 results on '"Lorena Petrusca"'
Search Results
2. Ai-based Comparison of Conventional LGE & Synthetic Magir-lge with Optimal Inversion-time: Impact on Population Analysis?
- Author
-
Romain Deleat-besson, MSc, BEng, Magalie Viallon, PhD, Lorena Petrusca-Perisanu, PhD, Pierre Croisille, MD, PhD, and Nicolas Duchateau, PhD
- Subjects
Diseases of the circulatory (Cardiovascular) system ,RC666-701 - Published
- 2024
- Full Text
- View/download PDF
3. Therapeutic potential of extracellular vesicles derived from cardiac progenitor cells in rodent models of chemotherapy-induced cardiomyopathy
- Author
-
Manon Desgres, Bruna Lima Correa, Lorena Petrusca, Gwennhael Autret, Chloé Pezzana, Céline Marigny, Chloé Guillas, Valérie Bellamy, José Vilar, Marie-Cécile Perier, Florent Dingli, Damarys Loew, Camille Humbert, Jérôme Larghero, Guillaume Churlaud, Nisa Renault, Pierre Croisille, Albert Hagège, Jean-Sébastien Silvestre, and Philippe Menasché
- Subjects
cardiovascular progenitor ,extracellular vesicles ,chemotherapy-induced cardiomyopathy ,cardiac strain ,cardio-oncology ,regenerative medicine ,Diseases of the circulatory (Cardiovascular) system ,RC666-701 - Abstract
BackgroundCurrent treatments of chemotherapy-induced cardiomyopathy (CCM) are of limited efficacy. We assessed whether repeated intravenous injections of human extracellular vesicles from cardiac progenitor cells (EV-CPC) could represent a new therapeutic option and whether EV manufacturing according to a Good Manufacturing Practices (GMP)-compatible process did not impair their bioactivity.MethodsImmuno-competent mice received intra-peritoneal injections (IP) of doxorubicin (DOX) (4 mg/kg each; cumulative dose: 12 mg/kg) and were then intravenously (IV) injected three times with EV-CPC (total dose: 30 billion). Cardiac function was assessed 9–11 weeks later by cardiac magnetic resonance imaging (CMR) using strain as the primary end point. Then, immuno-competent rats received 5 IP injections of DOX (3 mg/kg each; cumulative dose 15 mg/kg) followed by 3 equal IV injections of GMP-EV (total dose: 100 billion). Cardiac function was assessed by two dimensional-echocardiography.ResultsIn the chronic mouse model of CCM, DOX + placebo-injected hearts incurred a significant decline in basal (global, epi- and endocardial) circumferential strain compared with sham DOX-untreated mice (p = 0.043, p = 0.042, p = 0.048 respectively) while EV-CPC preserved these indices. Global longitudinal strain followed a similar pattern. In the rat model, IV injections of GMP-EV also preserved left ventricular end-systolic and end-diastolic volumes compared with untreated controls.ConclusionsIntravenously-injected extracellular vesicles derived from CPC have cardio-protective effects which may make them an attractive user-friendly option for the treatment of CCM.
- Published
- 2023
- Full Text
- View/download PDF
4. Pixel-wise statistical analysis of myocardial injury in STEMI patients with delayed enhancement MRI
- Author
-
Nicolas Duchateau, Magalie Viallon, Lorena Petrusca, Patrick Clarysse, Nathan Mewton, Loic Belle, and Pierre Croisille
- Subjects
acute myocadial infarction ,delayed enhancement MRI ,statistical atlas ,infarct size ,microvascular obstruction ,Diseases of the circulatory (Cardiovascular) system ,RC666-701 - Abstract
ObjectivesMyocardial injury assessment from delayed enhancement magnetic resonance images is routinely limited to global descriptors such as size and transmurality. Statistical tools from computational anatomy can drastically improve this characterization, and refine the assessment of therapeutic procedures aiming at infarct size reduction. Based on these techniques, we propose a new characterization of myocardial injury up to the pixel resolution. We demonstrate it on the imaging data from the Minimalist Immediate Mechanical Intervention randomized clinical trial (MIMI: NCT01360242), which aimed at comparing immediate and delayed stenting in acute ST-Elevation Myocardial Infarction (STEMI) patients.MethodsWe analyzed 123 patients from the MIMI trial (62 ± 12 years, 98 male, 65 immediate 58 delayed stenting). Early and late enhancement images were transported onto a common geometry using techniques inspired by statistical atlases, allowing pixel-wise comparisons across population subgroups. A practical visualization of lesion patterns against specific clinical and therapeutic characteristics was also proposed using state-of-the-art dimensionality reduction.ResultsInfarct patterns were roughly comparable between the two treatments across the whole myocardium. Subtle but significant local differences were observed for the LCX and RCA territories with higher transmurality for delayed stenting at lateral and inferior/inferoseptal locations, respectively (15% and 23% of myocardial locations with a p-value
- Published
- 2023
- Full Text
- View/download PDF
5. Cardioprotective effects of shock wave therapy: A cardiac magnetic resonance imaging study on acute ischemia-reperfusion injury
- Author
-
Lorena Petrusca, Pierre Croisille, Lionel Augeul, Michel Ovize, Nathan Mewton, and Magalie Viallon
- Subjects
shock wave therapy ,myocardial ischemia/reperfusion injury ,acute myocardial infarction ,experimental studies ,cardioprotection ,mechano-transduction ,Diseases of the circulatory (Cardiovascular) system ,RC666-701 - Abstract
IntroductionCardioprotection strategies remain a new frontier in treating acute myocardial infarction (AMI), aiming at further protect the myocardium from the ischemia-reperfusion damage. Therefore, we aimed at investigating the mechano-transduction effects induced by shock waves (SW) therapy at time of the ischemia reperfusion as a non-invasive cardioprotective innovative approach to trigger healing molecular mechanisms.MethodsWe evaluated the SW therapy effects in an open-chest pig ischemia-reperfusion (IR) model, with quantitative cardiac Magnetic Resonance (MR) imaging performed along the experiments at multiple time points (baseline (B), during ischemia (I), at early reperfusion (ER) (∼15 min), and late reperfusion (LR) (3 h)). AMI was obtained by a left anterior artery temporary occlusion (50 min) in 18 pigs (32 ± 1.9 kg) randomized into SW therapy and control groups. In the SW therapy group, treatment was started at the end of the ischemia period and extended during early reperfusion (600 + 1,200 shots @0.09 J/mm2, f = 5 Hz). The MR protocol included at all time points LV global function assessment, regional strain quantification, native T1 and T2 parametric mapping. Then, after contrast injection (gadolinium), we obtained late gadolinium imaging and extra-cellular volume (ECV) mapping. Before animal sacrifice, Evans blue dye was administrated after re-occlusion for area-at-risk sizing.ResultsDuring ischemia, LVEF decreased in both groups (25 ± 4.8% in controls (p = 0.031), 31.6 ± 3.2% in SW (p = 0.02). After reperfusion, left ventricular ejection fraction (LVEF) remained significantly decreased in controls (39.9 ± 4% at LR vs. 60 ± 5% at baseline (p = 0.02). In the SW group, LVEF increased quickly ER (43.7 ± 11.4% vs. 52.4 ± 8.2%), and further improved at LR (49.4 ± 10.1) (ER vs. LR p = 0.05), close to baseline reference (LR vs. B p = 0.92). Furthermore, there was no significant difference in myocardial relaxation time (i.e. edema) after reperfusion in the intervention group compared to the control group: ΔT1 (MI vs. remote) was increased by 23.2±% for SW vs. +25.2% for the controls, while ΔT2 (MI vs. remote) increased by +24.9% for SW vs. +21.7% for the control group.DiscussionIn conclusion, we showed in an ischemia-reperfusion open-chest swine model that SW therapy, when applied near the relief of 50′ LAD occlusion, led to a nearly immediate cardioprotective effect translating to a reduction in the acute ischemia-reperfusion lesion size and to a significant LV function improvement. These new and promising results related to the multi-targeted effects of SW therapy in IR injury need to be confirmed by further in-vivo studies in close chest models with longitudinal follow-up.
- Published
- 2023
- Full Text
- View/download PDF
6. CMRSegTools: An open-source software enabling reproducible research in segmentation of acute myocardial infarct in CMR images.
- Author
-
William A Romero R, Magalie Viallon, Joël Spaltenstein, Lorena Petrusca, Olivier Bernard, Loïc Belle, Patrick Clarysse, and Pierre Croisille
- Subjects
Medicine ,Science - Abstract
In the last decade, a large number of clinical trials have been deployed using Cardiac Magnetic Resonance (CMR) to evaluate cardioprotective strategies aiming at reducing the irreversible myocardial damage at the time of reperfusion. In these studies, segmentation and quantification of myocardial infarct lesion are often performed with a commercial software or an in-house closed-source code development thus creating a barrier for reproducible research. This paper introduces CMRSegTools: an open-source application software designed for the segmentation and quantification of myocardial infarct lesion enabling full access to state-of-the-art segmentation methods and parameters, easy integration of new algorithms and standardised results sharing. This post-processing tool has been implemented as a plug-in for the OsiriX/Horos DICOM viewer leveraging its database management functionalities and user interaction features to provide a bespoke tool for the analysis of cardiac MR images on large clinical cohorts. CMRSegTools includes, among others, user-assisted segmentation of the left-ventricle, semi- and automatic lesion segmentation methods, advanced statistical analysis and visualisation based on the American Heart Association 17-segment model. New segmentation methods can be integrated into the plug-in by developing components based on image processing and visualisation libraries such as ITK and VTK in C++ programming language. CMRSegTools allows the creation of training and testing data sets (labeled features such as lesion, microvascular obstruction and remote ROI) for supervised Machine Learning methods, and enables the comparative assessment of lesion segmentation methods via a single and integrated platform. The plug-in has been successfully used by several CMR imaging studies.
- Published
- 2022
- Full Text
- View/download PDF
7. Fast Volumetric Ultrasound B-Mode and Doppler Imaging with a New High-Channels Density Platform for Advanced 4D Cardiac Imaging/Therapy
- Author
-
Lorena Petrusca, François Varray, Rémi Souchon, Adeline Bernard, Jean-Yves Chapelon, Hervé Liebgott, William Apoutou N’Djin, and Magalie Viallon
- Subjects
ultrasound ,4-D ,cardiac ,fast volumetric imaging ,platform ,advanced imaging ,power doppler ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
A novel ultrasound (US) high-channels platform is a pre-requisite to open new frontiers in diagnostic and/or therapy by experimental implementation of innovative advanced US techniques. To date, a few systems with more than 1000 transducers permit full and simultaneous control in both transmission and receiving of all single elements of arrays. A powerful US platform for implementing 4-D (real-time 3-D) advanced US strategies, offering full research access, is presented in this paper. It includes a 1024-elements array prototype designed for 4-D cardiac dual-mode US imaging/therapy and 4 synchronized Vantage systems. The physical addressing of each element was properly chosen for allowing various array downsampled combinations while minimizing the number of driving systems. Numerical simulations of US imaging were performed, and corresponding experimental data were acquired to compare full and downsampled array strategies, testing 4-D imaging sequences and reconstruction processes. The results indicate the degree of degradation of image quality when using full array or downsampled combinations, and the contrast ratio and the contrast to noise ratio vary from 7.71 dB to 2.02 dB and from 2.99 dB to −7.31 dB, respectively. Moreover, the feasibility of the 4-D US platform implementation was tested on a blood vessel mimicking phantom for preliminary Doppler applications. The acquired data with fast volumetric imaging with up to 2000 fps allowed assessing the validity of common 3-D power Doppler, opening in this way a large field of applications.
- Published
- 2018
- Full Text
- View/download PDF
8. Reconstructing the spatial distribution of the relative shear modulus in quasi-static ultrasound elastography: plane stress analysis
- Author
-
Laurent Seppecher, Elie Bretin, Pierre Millien, Lorena Petrusca, Elisabeth Brusseau, and Seppecher, Laurent
- Subjects
[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/Imaging ,Acoustics and Ultrasonics ,Radiological and Ultrasound Technology ,Biophysics ,[PHYS.MECA.BIOM] Physics [physics]/Mechanics [physics]/Biomechanics [physics.med-ph] ,Radiology, Nuclear Medicine and imaging ,[MATH.MATH-AP] Mathematics [math]/Analysis of PDEs [math.AP] ,[MATH.MATH-NA] Mathematics [math]/Numerical Analysis [math.NA] ,[PHYS.MECA.ACOU] Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph] - Published
- 2022
9. Spectral Doppler Measurements With 2-D Sparse Arrays
- Author
-
Emmanuel Roux, Paolo Mattesini, Piero Tortoli, Alessandro Ramalli, Lorena Petrusca, Herve Liebgott, Olivier Basser, Department of Information Engineering [Firenze], Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), RMN et optique : De la mesure au biomarqueur, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Imagerie Ultrasonore, and Université de Florence
- Subjects
Acoustics and Ultrasonics ,Acoustics ,Spectral doppler ,Doppler measurements ,chemistry.chemical_element ,030204 cardiovascular system & hematology ,01 natural sciences ,Spectral line ,03 medical and health sciences ,symbols.namesake ,[SPI]Engineering Sciences [physics] ,0302 clinical medicine ,Sparse array ,0103 physical sciences ,Electrical and Electronic Engineering ,010301 acoustics ,Instrumentation ,ComputingMilieux_MISCELLANEOUS ,Physics ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Bandwidth (signal processing) ,Grid ,Hafnium ,chemistry ,symbols ,Doppler effect ,2-D arrays, 3-D imaging, sparse arrays, spectral Doppler measurements - Abstract
The 2-D sparse arrays, in which a few hundreds of elements are distributed on the probe surface according to an optimization procedure, represent an alternative to full 2-D arrays, including thousands of elements usually organized in a grid. Sparse arrays have already been used in B-mode imaging tests, but their application to Doppler investigations has not been reported yet. Since the sparsity of the elements influences the acoustic field, a corresponding influence on the mean frequency (Fm), bandwidth (BW), and signal-to-noise ratio (SNR) of the Doppler spectra is expected. This article aims to assess, by simulations and experiments, to what extent the use of a sparse rather than a full gridded 2-D array has an impact on spectral Doppler measurements. Parabolic flows were investigated by a 3 MHz, 1024-element gridded array and by a sparse array; the latter was obtained by properly selecting a subgroup of 256 elements from the full array. Simulations show that the mean Doppler frequency does not change between the sparse and the full array while there are significant differences on the BW (average reduction of 17.2% for the sparse array, due to different apertures of the two probes) and on the signal power (Ps) (22 dB, due to the different number of active elements). These results are confirmed by flow phantom experiments, which also highlight that the most critical difference between sparse and full gridded array in Doppler measurements is in terms of SNR (-16.8 dB). ispartof: IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL vol:67 issue:2 pages:278-285 ispartof: location:United States status: published
- Published
- 2020
- Full Text
- View/download PDF
10. Full 3D anisotropic estimation of tissue in ultrasound imaging
- Author
-
Herve Liebgott, Francois Varray, Magalie Viallon, Lorena Petrusca, Emeline Turquin, Imagerie Ultrasonore, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), and RMN et optique : De la mesure au biomarqueur
- Subjects
0301 basic medicine ,Materials science ,medicine.diagnostic_test ,Fiber (mathematics) ,business.industry ,Ultrasound ,Imaging phantom ,03 medical and health sciences ,[SPI]Engineering Sciences [physics] ,030104 developmental biology ,0302 clinical medicine ,medicine ,Coherence (signal processing) ,3D ultrasound ,business ,Anisotropy ,Ultrashort pulse ,030217 neurology & neurosurgery ,ComputingMilieux_MISCELLANEOUS ,Biomedical engineering ,Diffusion MRI - Abstract
In cardiac diseases or after myocardial infarction, the fibrous layout in the heart can be modified. To determine the local fiber orientation and to characterize the lesion, an imaging method is required. The fiber orientation can be determined by diffusion MRI, but various factors limit its use in a beating heart. It has been demonstrated that ultrafast ultrasound imaging can measure the local fiber orientation of an in vivo heart based on the ultrasound spatial coherence. This method only returns the fiber orientations in planes parallel to the probe surface. We propose a method called 3D coherence function to improve this initial strategy to extract the full 3D local anisotropy. To validate this approach, 3D ultrasound datasets were acquired on a phantom constituted of several wire layers mimicking different fiber layers. The acquisitions were conducted with different angles between the probe surface and the wire layers. For each dataset, the conventional approach and our 3D coherence function were computed to compare the improvement in the fiber angle evaluation. We have demonstrated that when the out-of-plane angle increases, the 3D coherence function allows a better extraction of the angle.
- Published
- 2019
- Full Text
- View/download PDF
11. 3D+t Vector Flow Imaging with Transverse Oscillations and Doppler Estimator
- Author
-
Sebastien Salles, Lorena Petrusca, Francois Varray, Herve Liebgott, Imagerie Ultrasonore, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), and RMN et optique : De la mesure au biomarqueur
- Subjects
medicine.diagnostic_test ,Computer science ,Acoustics ,Laminar flow ,Blood flow ,01 natural sciences ,Imaging phantom ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,symbols.namesake ,[SPI]Engineering Sciences [physics] ,0302 clinical medicine ,Flow (mathematics) ,Motion estimation ,0103 physical sciences ,symbols ,medicine ,Streamlines, streaklines, and pathlines ,3D ultrasound ,010301 acoustics ,Doppler effect ,Beam (structure) ,ComputingMilieux_MISCELLANEOUS - Abstract
Blood flow evaluation with ultrasound is an extremely usefull tool in the clinics in many different situations. The evaluation of the real 2D or 3D flow direction and amplitude remains an unsolved issue and a challenge to access to the full and correct flow characteristic. In this paper, an advanced 3D ultrasound system is used to estimate the 3D blood flow in an home made phantom with a laminar flow. After the acquisitions, the 3D processing of the beamformed volumes allow the creation of transverse oscillations and motion estimation in several direction to create a complex vector flow map in 3D. The obtained streamlines are coherent through the cycle and the qualitative evaluation of the flow is possible, even in direction perpendicular to the US beam axis. The proposed setup and method must be evaluated more deeply in more complex geometries, but this work demonstrates the feasibility to use such advanced system in 3D+t flow evaluation.
- Published
- 2019
- Full Text
- View/download PDF
12. Comparison between Multi Line Transmission and Diverging Wave Imaging: assessment of image quality and motion estimation accuracy
- Author
-
Magalie Viallon, Emilia Badescu, Philippe Joos, Herve Liebgott, Lionel Augeul, Damien Garcia, René Ferrera, Lorena Petrusca, Denis Friboulet, Adeline Bernard, Imagerie Ultrasonore, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Cardiovasculaire, métabolisme, diabétologie et nutrition (CarMeN), Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National de la Recherche Agronomique (INRA), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon, Centre Hospitalier Universitaire de Saint-Etienne (CHU de Saint-Etienne), RMN et optique : De la mesure au biomarqueur, Modeling & analysis for medical imaging and Diagnosis (MYRIAD), European Union's Horizon 2020 Research and Innovation Programme [VPH-CaSE] [642612], Laboratoire d'Excellence (LABEX) Centre Lyonnais d'Acoustique (CELYA) [ANR-10-LABX-0060], CarMeN, laboratoire, Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre de recherche du Chum [Montréal] (CRCHUM), Centre Hospitalier de l'Université de Montréal (CHUM), Service de chirurgie cardio-vasculaire et thoracique (CHU Dijon), Centre Hospitalier Universitaire de Dijon - Hôpital François Mitterrand (CHU Dijon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Hospices Civils de Lyon (HCL), Cardioprotection, Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM), and Images et Modèles
- Subjects
Acoustics and Ultrasonics ,Swine ,Image quality ,[SDV]Life Sciences [q-bio] ,Image processing ,Speckle tracking echocardiography ,Tissue Doppler Imaging ,01 natural sciences ,Imaging phantom ,Acoustique ,Diverging waves ,symbols.namesake ,Optics ,Speckle Tracking ,Motion estimation ,0103 physical sciences ,Image Processing, Computer-Assisted ,Animals ,Electrical and Electronic Engineering ,Electronique ,010301 acoustics ,Instrumentation ,Image resolution ,multiline transmission (MLT) ,speckle tracking ,ultrafast imaging ,diverging waves (DWs) ,tissue doppler imaging (TDI) ,ComputingMilieux_MISCELLANEOUS ,Physics ,Phantoms, Imaging ,business.industry ,Heart ,Acoustics ,Multi Line Transmit ,Echocardiography, Doppler ,[SDV] Life Sciences [q-bio] ,Temporal resolution ,symbols ,Ultrafast imaging ,Electronics ,business ,Doppler effect - Abstract
International audience; High frame rate imaging is particularly important in echocardiography for a better assessment of the cardiac function. Several studies showed that Diverging Wave Imaging (DWI) and Multi Line Transmit (MLT) are promising methods for achieving a high temporal resolution. The aim of this study was to compare MLT and compounded motion compensated (MoCo) DWI for the same transmitted power, the same frame rates (image quality and Speckle Tracking Echocardiography-STE assessment) and the same packet size (Tissue Doppler Imaging-TDI assessment). Our results on static images showed that MLT outperforms DW in terms of resolution (by 30% in average). However, in terms of contrast, MLT outperforms DW only for the depth of 11 cm (by 40% in average), the result being reversed at a depth of 4 cm (by 27 % in average). In vitro results on a spinning phantom at 9 different velocities showed that similar STE axial errors (up to 2.3% difference in median errors and up to 2.1% difference in the interquartile ranges) are obtained with both ultrafast methods. On the other hand, the median lateral STE estimates were up to 13% more accurate with DW than with MLT. On the opposite, the accuracy of TDI was only up to ~3% better with MLT, but the achievable DW Doppler frame rate was up to 20 times higher. However, our overall results showed that the choice of one method relative to the other is therefore dependent on the application. More precisely, in terms of image quality, DW is more suitable for imaging structures at low depths, while MLT can provide an improved image quality at the focal point that can be placed at higher depths. In terms of motion estimation, DW is more suitable for color Doppler related applications, while MLT could be used to estimate velocities along selected lines of the image.
- Published
- 2019
- Full Text
- View/download PDF
13. Optimal virtual sources distribution in 3-D diverging wave Ultrasound Imaging: an experimental study
- Author
-
Olivier Bassett, Piero Tortoli, Lorena Petrusca, Emmanuel Roux, Herve Liebgott, Paolo Mattesini, Goulven Le Moign, Emilia Badescu, Imagerie Ultrasonore, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Department of Electronics and Telecommunications [Florence] (DET), Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon, RMN et optique : De la mesure au biomarqueur, Department of Information Engineering [Firenze], and Università degli Studi di Firenze = University of Florence [Firenze]
- Subjects
Computer science ,Acoustics ,Labex CELYA ,Virtual sources ,01 natural sciences ,030218 nuclear medicine & medical imaging ,Labex PRIMES ,Diverging waves ,03 medical and health sciences ,0302 clinical medicine ,Sparse array ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,0103 physical sciences ,Medical imaging ,010301 acoustics ,Spiral ,ComputingMilieux_MISCELLANEOUS ,2-D Sparse array ,3-D Ultrasound imaging ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Ultrasonic imaging ,Imagerie Ultrasonore ,Distribution (mathematics) ,Transmission (telecommunications) ,Ultrasound imaging ,reseau international ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; The use of 2-D array probes to perform 3-D ul-trasound imaging is still investigated in many domains. The extension from 2-D to 3-D imaging causes problems because of the need to control a very large number of elements on the probe. It might be overcome by using 2-D sparse array. This problem has been recently shown that sparse 2-D arrays can be used for 3-D fast ultrasound imaging based on the transmission of Diverging Waves (DW). The aim of this work is to experimentally analyze how the distribution of a given number (25) of Virtual Sources (VS) over a predefined area affects the images obtained with one fully populated probe and two sparse array probes, respectively. In order to do that, gridded and spiral distributions of virtual sources have been implemented. The results show that with the spiral distribution there is a general improvement of the contrast despite of a degradation on both lateral and axial resolutions.
- Published
- 2018
- Full Text
- View/download PDF
14. Fast Volumetric Ultrasound B-Mode and Doppler Imaging with a New High-Channels Density Platform for Advanced 4D Cardiac Imaging/Therapy
- Author
-
William Apoutou N'Djin, Jean-Yves Chapelon, Francois Varray, Lorena Petrusca, Rémi Souchon, Herve Liebgott, Magalie Viallon, Adeline Bernard, RMN et optique : De la mesure au biomarqueur, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Imagerie Ultrasonore, Application des ultrasons à la thérapie (LabTAU), Centre Léon Bérard [Lyon]-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM), Plateforme d'Imagerie Multimodale LyonTech (PILoT), ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011), 5 - RMN et optique : De la mesure aux biomarqueurs, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé ( CREATIS ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), 3 - Imagerie Ultrasonore, Application des ultrasons à la thérapie ( LabTAU ), Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon]-Institut National de la Santé et de la Recherche Médicale ( INSERM ), Plateforme d'Imagerie Multimodale LyonTech ( PILoT ), 1 - Imagerie et modélisation Vasculaires, Thoraciques et Cérébrales ( MOTIVATE ), ANR-11-IDEX-0007-02/11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation ( 2011 ), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre Léon Bérard [Lyon]-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
Computer science ,Image quality ,cardiac ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,ultrasound ,4-D ,fast volumetric imaging ,platform ,advanced imaging ,power doppler ,01 natural sciences ,Doppler imaging ,lcsh:Technology ,Imaging phantom ,030218 nuclear medicine & medical imaging ,lcsh:Chemistry ,03 medical and health sciences ,symbols.namesake ,0302 clinical medicine ,Contrast-to-noise ratio ,0103 physical sciences ,General Materials Science ,010301 acoustics ,Instrumentation ,lcsh:QH301-705.5 ,Cardiac imaging ,[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/Imaging ,Fluid Flow and Transfer Processes ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,business.industry ,lcsh:T ,[ SPI.ACOU ] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Process Chemistry and Technology ,General Engineering ,lcsh:QC1-999 ,Computer Science Applications ,Transmission (telecommunications) ,lcsh:Biology (General) ,lcsh:QD1-999 ,lcsh:TA1-2040 ,symbols ,Contrast ratio ,business ,lcsh:Engineering (General). Civil engineering (General) ,Doppler effect ,Computer hardware ,lcsh:Physics - Abstract
International audience; A novel ultrasound (US) high-channels platform is a prerequisite to open new frontiers in diagnostic and/or therapy by experimental implementation of innovative advanced US techniques. To date, a few systems with more than 1000 transducers permit full and simultaneous control in both transmission and receiving of all single elements of arrays. A powerful US platform for implementing 4-D (real-time 3-D) advanced US strategies, offering full research access, is presented in this paper. It includes a 1024-elements array prototype designed for 4-D cardiac dual-mode US imaging/therapy and 4 synchronized Vantage systems. The physical addressing of each element was properly chosen for allowing various array downsampled combinations while minimizing the number of driving systems. Numerical simulations of US imaging were performed, and corresponding experimental data were acquired to compare full and downsampled array strategies, testing 4-D imaging sequences and reconstruction processes. The results indicate the degree of degradation of image quality when using full array or downsampled combinations, and the contrast ratio and the contrast to noise ratio vary from 7.71 dB to 2.02 dB and from 2.99 dB to −7.31 dB, respectively. Moreover, the feasibility of the 4-D US platform implementation was tested on a blood vessel mimicking phantom for preliminary Doppler applications. The acquired data with fast volumetric imaging with up to 2000 fps allowed assessing the validity of common 3-D power Doppler, opening in this way a large field of applications.
- Published
- 2018
- Full Text
- View/download PDF
15. Hybrid ultrasound-MR guided HIFU treatment method with 3D motion compensation
- Author
-
Francesco Santini, Christoph D. Becker, Gibran Manasseh, Yutaka Natsuaki, Lorena Petrusca, Jean-Noël Hyacinthe, Klaus Scheffler, Vincent Auboiroux, Lindsey A. Crowe, Zarko Celicanin, Rares Salomir, Sylvain Terraz, and Oliver Bieri
- Subjects
Adult ,Male ,medicine.medical_specialty ,Thermometry ,ddc:616.0757 ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Organ Motion ,Imaging, Three-Dimensional ,medicine ,Animals ,Humans ,Radiology, Nuclear Medicine and imaging ,Ghosting ,Motion compensation ,medicine.diagnostic_test ,business.industry ,Ultrasound ,Magnetic resonance imaging ,Gold standard (test) ,Magnetic Resonance Imaging ,3. Good health ,Liver ,Surgery, Computer-Assisted ,Hifu treatment ,030220 oncology & carcinogenesis ,Coronal plane ,High-Intensity Focused Ultrasound Ablation ,Cattle ,Female ,Radiology ,business ,Algorithms ,Biomedical engineering - Abstract
Purpose Treatments using high-intensity focused ultrasound (HIFU) in the abdominal region remain challenging as a result of respiratory organ motion. A novel method is described here to achieve 3D motion-compensated ultrasound (US) MR-guided HIFU therapy using simultaneous ultrasound and MRI. Methods A truly hybrid US-MR-guided HIFU method was used to plan and control the treatment. Two-dimensional ultrasound was used in real time to enable tracking of the motion in the coronal plane, whereas an MR pencil-beam navigator was used to detect anterior–posterior motion. Prospective motion compensation of proton resonance frequency shift (PRFS) thermometry and HIFU electronic beam steering were achieved. Results The 3D prospective motion-corrected PRFS temperature maps showed reduced intrascan ghosting artifacts, a high signal-to-noise ratio, and low geometric distortion. The k-space data yielded a consistent temperature-dependent PRFS effect, matching the gold standard thermometry within approximately 1°C. The maximum in-plane temperature elevation ex vivo was improved by a factor of 2. Baseline thermometry acquired in volunteers indicated reduction of residual motion, together with an accuracy/precision of near-harmonic referenceless PRFS thermometry on the order of 0.5/1.0°C. Conclusions Hybrid US-MR-guided HIFU ablation with 3D motion compensation was demonstrated ex vivo together with a stable referenceless PRFS thermometry baseline in healthy volunteer liver acquisitions. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
- Published
- 2018
16. 3D Ultrasound Imaging of Tissue Anisotropy Using Spatial Coherence: Comparison between Plane Waves and Diverging Waves
- Author
-
Lorena Petrusca, Francois Varray, Emeline Turquin, Herve Liebgott, Magalie Viallon, Imagerie Ultrasonore, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), RMN et optique : De la mesure au biomarqueur, ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011), 3 - Imagerie Ultrasonore, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé ( CREATIS ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), 5 - RMN et optique : De la mesure aux biomarqueurs, 1 - Imagerie et modélisation Vasculaires, Thoraciques et Cérébrales ( MOTIVATE ), and ANR-11-IDEX-0007-02/11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation ( 2011 )
- Subjects
Physics ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,medicine.diagnostic_test ,business.industry ,Orientation (computer vision) ,[ SPI.ACOU ] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,Ultrasound ,Plane wave ,Field of view ,01 natural sciences ,Imaging phantom ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Optics ,0103 physical sciences ,medicine ,3D ultrasound ,business ,010301 acoustics ,Cardiac imaging ,[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/Imaging ,Coherence (physics) - Abstract
International audience; Background, Motivation and ObjectiveAfter a myocardium infarction, cell loss is irremediable leading to a progressive local disorganization and change in the tissue structure altering heart function. An imaging method able to render the local tissue directivity would be a powerful tool to characterize the extent of the lesion. In this field, diffusion MRI is the reference. Because of its long acquisitiontime and the difficulty to tackle organ motion, faster imaging strategies such as ultrasound, are mandatory for such clinical applications. One of them is the spatial coherence of US waves, already developed in focused and plane waves (2D and 3D) but never in diverging waves [Papadacci, UFFC 2014]. The advantage of diverging waves is to create an imagewith a higher field of view, which is more appropriate to in vivo cardiac applications. The purpose of this work is to use 2D spatial coherence to determine the fibers orientation and to compare results in 3D steered plane and diverging waves.Statement of Contribution/MethodsSpatial coherence is representative of the tissue structure. In an anisotropic medium, spatial coherence is high in that preferred local direction and the 2D coherence function exhibits an ellipsoidal shape. The main axis of this ellipse corresponds to the local main direction of the underlying tissue structure. Acquisitions have been conducted on a phantom designed from seven angled wires (ø 0.3 mm) embedded in an agar gel. The dataset was obtained using a 1024 channels ultrasound system based on the synchronization of 4 Verasonics Vantage 256 systems. A 1024 elements of a 32x32 elements 3 MHz array (Vermon) was fully controlled to transmit 2D steered plane and diverging waves on the same location. 25 transmission angles from -5° to 5° in x and y direction were used. The 2D coherence function maps were calculated on the spatial points corresponding to the centre of the seven wires and the main axis of ellipsoidal shapes are extracted to render the wires angle.Results/DiscussionThe curves representing the wires angle obtained in both plane and diverging waves are close to the reference. Using diverging waves, a RMSE of 4.8° is obtained which is better than the RMSE of 11.2° obtained with plane wave transmissions. It demonstrates the interest of 3D diverging waves to increase both the field of view and the coherence calculation accuracy. Such results must now be confirmed on heart sample acquisitions.
- Published
- 2017
17. Validation of Optimal 2D Sparse Arrays in Focused Mode: Phantom Experiments
- Author
-
Lorena Petrusca, Christian Cachard, Alessandro Ramalli, Francois Varray, Emilia Badescu, Marc Robini, Herve Liebgott, Piero Tortoli, Emmanuel Roux, Department of Information Engineering [Firenze], Università degli Studi di Firenze = University of Florence (UniFI), Imagerie Ultrasonore, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), RMN et optique : De la mesure au biomarqueur, Imagerie et modélisation Vasculaires, Thoraciques et Cérébrales (MOTIVATE), Rayet, Béatrice, Università degli Studi di Firenze = University of Florence [Firenze] (UNIFI), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Firenze [Firenze], 3 - Imagerie Ultrasonore, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé ( CREATIS ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), 5 - RMN et optique : De la mesure aux biomarqueurs, and 1 - Imagerie et modélisation Vasculaires, Thoraciques et Cérébrales ( MOTIVATE )
- Subjects
0301 basic medicine ,Computer science ,Main lobe ,Acoustics ,Lateral resolution ,[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing ,01 natural sciences ,Grayscale ,Imaging phantom ,03 medical and health sciences ,wideband optimization ,Optics ,0302 clinical medicine ,Contrast-to-noise ratio ,Side lobe ,experimental validation ,0103 physical sciences ,2D sparse arrays ,medicine ,3D ultrasound ,multi-depths ,010301 acoustics ,Image resolution ,030304 developmental biology ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,0303 health sciences ,[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,medicine.diagnostic_test ,business.industry ,[ SPI.ACOU ] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,030104 developmental biology ,Simulated annealing ,business ,focused mode ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,030217 neurology & neurosurgery - Abstract
International audience; Background, Motivation and ObjectiveIn parallel with the increasing interest for 3D ultrasound imaging, different design techniques have been investigated to find the best configurations of 2D sparse arrays to scan an entire volume of interest [Trucco, IEEE UFFC99], [Diarra, IEEE TBME13]. In particular, we recently addressed the issue of driving a full 2D array of 1024 elements with a reduced number of channels (128, 192 or 256): the optimal arrays (opti128, opti192 and opti256) were obtained using simulated annealing to sculpt the radiated wideband pressure field at multiple depths [Roux, IEEE UFFC17]. The aim of the present work is to experimentally validate these optimal configurations by performing 3D focused imaging on phantoms.Statement of Contribution/MethodsThe 1024 elements of a 3 MHz array made by Vermon were individually driven by four synchronized Verasonics Vantage 256 systems. The systems were programmed to transmit 3-cycle sine bursts at 3 MHz focused at 25 mm and to scan a 3D sector with span ±30° in 31×29 steered beams in azimuth and elevation, respectively. Six arrays were compared: the optimal arrays (opti128, opti192 and opti256), an array whose active elements where randomly selected (rand256) and two references (REF716 and REF1024). The circular dense array REF716 corresponds to the full array REF1024 array without the corner elements. The comparison criteria were the lateral resolution (full width at half maximum - FWHM) and the contrast to noise ratio (CNR), measured on the images obtained by scanning a Gammex (Sono410 SCG) and CIRS (054GS) phantoms respectively.Results/DiscussionThe results are reported in Table 1. The opti256 performs the best among all the compared sparse arrays because it presents the same resolution performance as the REF1024 and an acceptable loss of CNR while using only 25% of the active elements of REF1024. The REF716 array is very competitive with only 70% of the active elements of REF1024.
- Published
- 2017
18. A New High Channels Density Ultrasound Platform for Advanced 4D Cardiac Imaging
- Author
-
Herve Liebgott, Rémi Souchon, Francois Varray, Adeline Bernard, Magalie Viallon, W. Apoutou N'Djin, Jean-Yves Chapelon, Lorena Petrusca, 5 - RMN et optique : De la mesure aux biomarqueurs, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé ( CREATIS ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), 3 - Imagerie Ultrasonore, Applications des ultrasons à la thérapie, Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale ( INSERM ), Plateforme d'Imagerie Multimodale LyonTech ( PILoT ), 1 - Imagerie et modélisation Vasculaires, Thoraciques et Cérébrales ( MOTIVATE ), ANR-11-IDEX-0007-02/11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation ( 2011 ), RMN et optique : De la mesure au biomarqueur, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Imagerie Ultrasonore, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM), Plateforme d'Imagerie Multimodale LyonTech (PILoT), and ANR-11-LABX-0063,PRIMES,Physique, Radiobiologie, Imagerie Médicale et Simulation(2011)
- Subjects
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Scanner ,Computer simulation ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,Computer science ,business.industry ,[ SPI.ACOU ] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Electrical engineering ,01 natural sciences ,Synchronization ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,Transducer ,Sparse array ,0103 physical sciences ,Waveform ,business ,010301 acoustics ,Computer hardware ,Cardiac imaging ,[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/Imaging - Abstract
International audience; Background, Motivation and ObjectiveA novel ultrasound (US) platform with high channels density that offers flexibility, precision and open access is a pre-requisite to open new frontiers in diagnostic and/or therapy by experimental implementation of new enabled advanced techniques: dual-mode US imaging/therapies in the heart, new approaches to study the myocardial tissue (structure/characterization), fast sparse array strategies, multi-line transmit (MLT), powerful motion correction strategies. To date few systems in the world permit to have a full control both in transmit and receive of all single elements simultaneously of arrays with more than 1000 transducers. This paper presents a powerful US platform for implementing 4D (real-time 3D) advanced US strategies.Statement of Contribution/MethodsAn US platform was developed including a 1024-element US prototype designed for 4D cardiac dual-mode US imaging/therapy (Vermon, 2D 32x32 planar phased-array transducer, fc = 3.4 MHz) and a high channels density (1024-channels) US scanner, made of 4 256-Vantage systems (Verasonics) synchronized together (Fig1e). These systems have per-channel arbitrary waveform transmit/receive generation capability with easy access to RF data. The physical addressing of each US element was properly chosen for allowing various array sparsity combinations while minimizing the number of Vantage driving systems needed. Numerical simulations of US imaging were performed and experimental data of identical configuration were acquired to compare full and sparse array strategies, testing 4D imaging sequences and reconstruction processes.Results/DiscussionReal-time 4D US imaging was successfully performed in full array mode by synchronizing in emission/reception up to 1024 elements independently. The modular US platform could be reconfigured depending on the number of available Vantage (1 to 4 systems) allowing to use dense halves/quarters of the array, or downsampled full array (Fig1b-d). The validationof image sequences involved plane, diverging and focused waves (SPW, SDW, MLT) and the technical feasibility of real-time 4D US for low therapy focused US and imaging was confirmed with this 1024-channels density US system, offering full research access for developing advanced US strategies.
- Published
- 2017
19. METHODOLOGIES ACOUSTIQUES DANS LE TRAITEMENT DE LA PHASE AIGUË DE L’INFARCTUS DU MYOCARDE
- Author
-
Magalie Viallon, Lorena Petrusca, Djin, William Apoutou N., Claire Crola da Silva, Nathan Mewton, René FERRERA, Hervé Liebgott, Lionel Augeul, Michel Ovize, Jean-Yves Chapelon, Pierre Croisille, RMN et optique : De la mesure au biomarqueur, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Applications des ultrasons à la thérapie, Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale (INSERM), Cardiovasculaire, métabolisme, diabétologie et nutrition (CarMeN), Institut National de la Recherche Agronomique (INRA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Hospices Civils de Lyon (HCL), Imagerie Ultrasonore, Hôpital nord, St Etienne, 1 - Imagerie et modélisation Vasculaires, Thoraciques et Cérébrales ( MOTIVATE ), Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé ( CREATIS ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), 5 - RMN et optique : De la mesure aux biomarqueurs, Université de Lyon-Université de Lyon-Institut National de la Santé et de la Recherche Médicale ( INSERM ), Cardiovasculaire, métabolisme, diabétologie et nutrition ( CarMeN ), Institut National de la Recherche Agronomique ( INRA ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), 3 - Imagerie Ultrasonore, Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Hospices Civils de Lyon (HCL)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National de la Recherche Agronomique (INRA), and Rayet, Béatrice
- Subjects
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/Imaging ,[ SPI.ACOU ] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/Imaging - Abstract
International audience; Les maladies cardiovasculaires restent la principale cause de mortalité chez l'adulte dans les pays industrialisés [1-3]. La taille de l'infarctus est le facteur majeur du pronostic après infarctus du myocarde aigu [4,5]. Les interventions visant à réduire la taille finale de l'infarctus ont donc un intérêt clinique majeur pour améliorer le pronostic des patients pris en charge pour infarctus du myocarde. La prise en charge actuelle de l’infarctus du myocarde vise à reperfuser le myocarde le plus rapidement possible, par angioplastie coronaire percutanée primaire le plus souvent [6]. Cependant des études expérimentales et cliniques ont montré qu’une reperfusion brutale avait aussi des effets délétères sur le myocarde ischémique et induisait des lésions de reperfusion supplémentaires [7, 8]. Ces dommages survenant après reperfusion peuvent participer jusqu'à 40% de la taille finale de l'infarctus [9].La nouvelle frontière dans la prise en charge de l’infarctus du myocarde aigu s’est déplacée du rétablissement rapide d’une reperfusion efficace de l’artère occluse, à la protection efficace du myocarde à risque de développer un infarctus dans le territoire en aval de l’occlusion. L’objectif est toujours de réduire la quantité finale de myocarde détruit de façon irréversible. Plusieurs études cliniques de phase II ont été réalisées afin de tester différentes interventions de cardioprotection pour réduire la taille de l'infarctus. Pour l'instant aucune technique n’a démontré son efficacité et/ou s’est avérée transposable à la prise en charge thérapeutique de routine des patients présentant un infarctus du myocarde aigu [10-12]. La recherche de nouvelles voies thérapeutiques pour traiter efficacement cet infarctus de reperfusion est donc un enjeu majeur.Références1. Hasdai D et al, 2002;2. Mandelzweig L et al, 20063. Friedrich MG et al, 20104. GibbonsRJ, JACC 2004.5. Lonborg J, Eur Heart J Card Imaging. 2013.6. Steg, Eur Heart J 2012.7. Reffelmann T et al. Basic Res Cardiol. 2006.
- Published
- 2017
20. Simultaneous pulse wave and flow estimation at high-framerate using plane wave and transverse oscillation on carotid phantom
- Author
-
Herve Liebgott, Adeline Bernard, Lorena Petrusca, Vincent Perrot, Didier Vray, cervenansky, frederic, Imagerie Ultrasonore, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
transverse oscillation ,[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processing ,Plane wave ,Phase (waves) ,carotid phantom ,plane wave ,pulse wave ,030204 cardiovascular system & hematology ,01 natural sciences ,motion estimation ,03 medical and health sciences ,0302 clinical medicine ,Optics ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,0103 physical sciences ,Pulse wave ,010301 acoustics ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing ,Physics ,business.industry ,Oscillation ,Horizontal plane ,Pulse (physics) ,Wavelength ,Transverse plane ,flow ,flow estimation ,business ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing - Abstract
International audience; In this paper a global estimation method based on transverse oscillation to simultaneously extract wall and flow velocities at high-framerate is presented. Several carotid phantoms with various parameters were made to validate the method. All acquisitions were performed at high-framerate (7 500 images per second) using horizontal plane wave with a 3 cycles sinusoidal transmit pulse. Transverse oscillation was introduced in post-acquisition. Finally, velocity vectors were extracted thanks to a phase based estimator with a region of interest of 2 mm (8 axial wavelengths) per 2.96 mm (2 lateral wavelengths) for each pixel. Results are promising, all standard deviations are lower than 10 % and the method is now validated for a deeper study. Indeed, flow and pulse wave velocities computed by the algorithm are in accordance with pressure columns and number of freezethaw cycles.
- Published
- 2017
- Full Text
- View/download PDF
21. Estimation of arterial wall motion using ultrafast imaging and transverse oscillations: in vivo study
- Author
-
Anne Long, Sebastien Salles, Vincent Perrot, Herve Liebgott, Lorena Petrusca, Didier Vray, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway, 3 - Imagerie Ultrasonore, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé ( CREATIS ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), 5 - RMN et optique : De la mesure aux biomarqueurs, Department of Circulation and Medical Imaging [Trondheim] (ISB NTNU), Norwegian University of Science and Technology [Trondheim] (NTNU), Norwegian University of Science and Technology (NTNU)-Norwegian University of Science and Technology (NTNU), Imagerie Ultrasonore, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), RMN et optique : De la mesure au biomarqueur, Rayet, Béatrice, Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Subjects
[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,Labex CELYA ,Rigidity (psychology) ,[ SPI.SIGNAL ] Engineering Sciences [physics]/Signal and Image processing ,030204 cardiovascular system & hematology ,01 natural sciences ,Labex PRIMES ,03 medical and health sciences ,Acceleration ,0302 clinical medicine ,Optics ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,In vivo ,Motion estimation ,0103 physical sciences ,Perpendicular ,010301 acoustics ,ComputingMilieux_MISCELLANEOUS ,[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/Imaging ,[SPI.SIGNAL] Engineering Sciences [physics]/Signal and Image processing ,Waves propagation ,Carotid ,Physics ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,business.industry ,[ SPI.ACOU ] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Estimator ,3. Good health ,Transverse plane ,reseau_international ,Imagerie Ultrasonore ,[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/Imaging ,Transverse oscillations ,Ultrafast imaging ,Wall spatial periodic ripples ,categₘixte ,business ,Ultrashort pulse ,[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing ,Biomedical engineering - Abstract
International audience; Early detection of cardiovascular diseases can be done by assessing the dynamic properties of arteries. In this study, two phenomena related to the carotid wall motion are presented. The 2D motion estimation method employs (i) ultrafast imaging which became a world-wide use modality, (ii) transverse oscillations technics which allow improving the motion estimation in transverse direction i.e. perpendicular to the beam, and (iii) a 2D phase shift estimator. First, using only the radial acceleration wall, the Wall Spatial Periodic Ripples (WSPR) is studied under a cold pressor test. The results show that the WSPR mean maximum amplitude decreased of 22.9% at the systolic wave and 33.2% at the dicrotic notch. So, the WSPR is a possible artery wall rigidity marker. Then, using a very high frame rate imaging, the longitudinal carotid wall motion of one healthy subject is studied. This second experimentation permits to estimate the propagation of a longitudinal motion on an in vivo carotid. Its mean velocity was evaluated at 16.1 m.s-1, which given a ratio of 3 between with the estimated PWV.
- Published
- 2016
- Full Text
- View/download PDF
22. An experimental model to investigate the targeting accuracy of MR-guided focused ultrasound ablation in liver
- Author
-
Lorena Petrusca, Vincent Auboiroux, Thomas Goget, Loredana Baboi, Gibran Manasseh, Rares Salomir, Patrick Gross, Christoph D. Becker, K. Michael Sekins, Magalie Viallon, Sylvain Terraz, Romain Breguet, Department of Medical Imaging and Information Sciences, Interventional Neuroradiology Unit, Geneva University Hospital (HUG), Centre Hospitalier Universitaire de Saint-Etienne (CHU de Saint-Etienne), RMN et optique : De la mesure au biomarqueur, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Liver surgery ,Pathology ,medicine.medical_specialty ,Magnetic Resonance Spectroscopy ,Radio Waves ,[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,medicine.medical_treatment ,Sus scrofa ,Thermal ablation ,ddc:616.0757 ,High-Intensity Focused Ultrasound Ablation/methods ,General Biochemistry, Genetics and Molecular Biology ,Focused ultrasound ,030218 nuclear medicine & medical imaging ,Sonication ,03 medical and health sciences ,0302 clinical medicine ,medicine ,[INFO.INFO-IM]Computer Science [cs]/Medical Imaging ,Ballistic marker ,Animals ,Liver/surgery/ultrasonography ,Ultrasonography ,Medicine(all) ,Targeting ,Focal point ,Experimental model ,business.industry ,Biochemistry, Genetics and Molecular Biology(all) ,Research ,General Medicine ,Ablation ,High-intensity focused ultrasound ,3. Good health ,Liver ,030220 oncology & carcinogenesis ,Models, Animal ,Tracer encapsulation ,High-Intensity Focused Ultrasound Ablation ,MR guided HIFU ,Female ,Rabbits ,business ,Mri guided ,Pre-clinical quality assurance ,Biomedical engineering - Abstract
Background Magnetic Resonance-guided High Intensity Focused Ultrasound (MRgHIFU) is a hybrid technology that aims to offer non-invasive thermal ablation of targeted tumors or other pathological tissues. Acoustic aberrations and non-linear wave propagating effects may shift the focal point significantly away from the prescribed (or, theoretical) position. It is therefore mandatory to evaluate the spatial accuracy of ablation for a given HIFU protocol and/or device. We describe here a method for producing a user-defined ballistic target as an absolute reference marker for MRgHIFU ablations. Methods The investigated method is based on trapping a mixture of MR contrast agent and histology stain using radiofrequency (RF) ablation causing cell death and coagulation. A dedicated RF-electrode was used for the marker fixation as follows: a RF coagulation (4 W, 15 seconds) and injection of the mixture followed by a second RF coagulation. As a result, the contrast agent/stain is encapsulated in the intercellular space. Ultrasonography imaging was performed during the procedure, while high resolution T1w 3D VIBE MR acquisition was used right after to identify the position of the ballistic marker and hence the target tissue. For some cases, after the marker fixation procedure, HIFU volumetric ablations were produced by a phased-array HIFU platform. First ex vivo experiments were followed by in vivo investigation on four rabbits in thigh muscle and six pigs in liver, with follow-up at Day 7. Results At the end of the procedure, no ultrasound indication of the marker’s presence could be observed, while it was clearly visible under MR and could be conveniently used to prescribe the HIFU ablation, centered on the so-created target. The marker was identified at Day 7 after treatment, immediately after animal sacrifice, after 3 weeks of post-mortem formalin fixation and during histology analysis. Its size ranged between 2.5 and 4 mm. Conclusions Experimental validation of this new ballistic marker method was performed for liver MRgHIFU ablation, free of any side effects (e.g. no edema around the marker, no infection, no bleeding). The study suggests that the absolute reference marker had ultrasound conspicuity below the detection threshold, was irreversible, MR-compatible and MR-detectable, while also being a well-established histology staining technique.
- Published
- 2014
23. ARFI-prepared MRgHIFU in liver: simultaneous mapping of ARFI-displacement and temperature elevation, using a fast GRE-EPI sequence
- Author
-
Jean-Noël Hyacinthe, Rares Salomir, Patrick Gross, Joerg Roland, Christoph R. Becker, Thomas Goget, Sylvain Terraz, Lorena Petrusca, Magalie Viallon, Denis R Morel, and Vincent Auboiroux
- Subjects
Planar Imaging ,Materials science ,Focus (geometry) ,medicine.medical_treatment ,Electron Spin Resonance Spectroscopy/methods ,Elasticity Imaging Techniques/methods ,ddc:616.0757 ,High-Intensity Focused Ultrasound Ablation/methods ,030218 nuclear medicine & medical imaging ,Body Temperature ,03 medical and health sciences ,0302 clinical medicine ,Nuclear magnetic resonance ,medicine ,Animals ,Radiology, Nuclear Medicine and imaging ,Acoustic radiation force ,Image resolution ,Focal point ,Sheep ,Surgery, Computer-Assisted/methods ,Electron Spin Resonance Spectroscopy ,Ablation ,High-intensity focused ultrasound ,Liver/anatomy & histology/physiology/surgery ,Liver ,Surgery, Computer-Assisted ,Thermography ,Temporal resolution ,Thermography/methods ,Elasticity Imaging Techniques ,High-Intensity Focused Ultrasound Ablation ,Female ,030217 neurology & neurosurgery - Abstract
MR acoustic radiation force imaging (ARFI) is an elegant adjunct to MR guided high intensity focused ultrasound for treatment planning and optimization permitting in situ assessment of the focusing and targeting quality. The thermal effect of high intensity focused ultrasound pulses associated with ARFI measurements is recommended to be monitored on line in particular when the beam crosses highly absorbent structures or interfaces (e.g. bones or air filled cavities). A dedicated MR sequence is proposed here derived from a segmented gradient echo echo planar imaging kernel by adding a bipolar motion encoding gradient with interleaved alternating polarities. Temporal resolution was reduced to 2.1 s with in plane spatial resolution of 1 mm. MR ARFI measurements were executed during controlled animal breathing with trans costal successively steered foci to investigate the spatial modulation of the focus intensity and the targeting offset. ARFI induced tissue displacement measurements enabled the accurate localization in vivo of the high intensity focused ultrasound focal point in sheep liver with simultaneous monitoring of the temperature elevation. ARFI based precalibration of the focal point position was immediately followed by trans costal MR guided high intensity focused ultrasound ablation monitored with a conventional proton resonance frequency shift MR thermometry sequence. The latter MR thermometry sequence had spatial resolution and geometrical distortion identical with the ARFI maps hence no coregistration was required. Magn Reson Med 2012. © 2012 Wiley Periodicals Inc.
- Published
- 2012
24. Reference-free PRFS MR-thermometry using near-harmonic 2-D reconstruction of the background phase
- Author
-
Denis R. Morel, Jörg Roland, Magalie Viallon, Lorena Petrusca, Patrick Gross, Vincent Auboiroux, Thomas Goget, Antje Kickhefel, Sylvain Terraz, Rares Salomir, and Christoph D. Becker
- Subjects
Turkeys ,Perturbation (astronomy) ,Iterative reconstruction ,In Vitro Techniques ,ddc:616.0757 ,High-Intensity Focused Ultrasound Ablation/methods ,Sensitivity and Specificity ,Body Temperature ,030218 nuclear medicine & medical imaging ,Magnetic Resonance Imaging/methods ,03 medical and health sciences ,0302 clinical medicine ,Nuclear magnetic resonance ,Body Temperature/physiology ,Region of interest ,Reference Values ,Image Interpretation, Computer-Assisted ,Animals ,Electrical and Electronic Engineering ,Muscle, Skeletal/pathology/physiopathology/surgery ,Muscle, Skeletal ,Physics ,Polynomial regression ,Radiological and Ultrasound Technology ,Surgery, Computer-Assisted/methods ,Image Interpretation, Computer-Assisted/methods ,Subtraction ,Reproducibility of Results ,White noise ,Magnetic Resonance Imaging ,Computer Science Applications ,Computational physics ,Magnetic field ,Surgery, Computer-Assisted ,Harmonic function ,Thermography ,Thermography/methods ,High-Intensity Focused Ultrasound Ablation ,030217 neurology & neurosurgery ,Software - Abstract
Proton resonance frequency shift (PRFS) MR thermometry (MRT) is the generally preferred method for monitoring thermal ablation, typically implemented with gradient-echo (GRE) sequences. Standard PRFS MRT is based on the subtraction of a temporal reference phase map and is, therefore, intrinsically sensitive to tissue motion (including deformation) and to external perturbation of the magnetic field. Reference-free (or reference-less) PRFS MRT has been previously described by Rieke and was based on a 2-D polynomial fit performed on phase data from outside the heated region, to estimate the background phase inside the region of interest. While their approach was undeniably a fundamental progress in terms of robustness against tissue motion and magnetic perturbations, the underlying mathematical formalism requires a thick unheated border and may be subject to numerical instabilities with high order polynomials. A novel method of reference-free PRFS MRT is described here, using a physically consistent formalism, which exploits mathematical properties of the magnetic field in a homogeneous or near-homogeneous medium. The present implementation requires as input the MR GRE phase values along a thin, nearly-closed and unheated border. This is a 2-D restriction of a classic Dirichlet problem, working on a slice per slice basis. The method has been validated experimentally by comparison with the “ground truth” data, considered to be the standard PRFS method for static ex vivo tissue. “Zero measurement” of the gradient-echo phase baseline was performed in healthy volunteer liver with rapid acquisition (300 ms/image). In vivo data acquired in sheep liver during MR-guided high intensity focused ultrasound (MRgHIFU) sonication were post-processed as proof of applicability in a therapeutic scenario. Bland and Altman mean absolute difference between the novel method and the “ground truth” thermometry in ex vivo static tissue ranged between 0.069 °C and 0.968 °C, compared to the inherent “white” noise SD of 0.23 °C. The accuracy and precision of the novel method in volunteer liver were found to be on average 0.13 °C and respectively 0.65 °C while the inherent “white” noise SD was on average 0.51 °C. The method was successfully applied to large ROIs, up to 6.2 cm inner diameter, and the computing time per slice was systematically less than 100 ms using C++. The current limitations of reference-free PRFS thermometry originate mainly from the need to provide a nearly-closed border, where the MR phase is artifact-free and the tissue is unheated, plus the potential need to reposition that border during breathing to track the motion of the anatomic zone being monitored.A reference-free PRFS thermometry method based on the theoretical framework of harmonic functions is described and evaluated here. The computing time is compatible with online monitoring during local thermotherapy. The current reference-free MRT approach expands the workflow flexibility, eliminates the need for respiratory triggers, enables higher temporal resolution, and is insensitive to unique-event motion of tissue.
- Published
- 2012
25. Keep breathing! Common motion helps multi-modal mapping
- Author
-
Lorena Petrusca, V. De Luca, Christine Tanner, Helmut Grabner, Gábor Székely, and Rares Salomir
- Subjects
Ground truth ,Modal ,Computer science ,Feature (computer vision) ,business.industry ,Breathing ,Computer vision ,Artificial intelligence ,business ,Signal ,ddc:616.0757 ,Motion (physics) ,Image (mathematics) - Abstract
We propose an unconventional approach for transferring of information between multi-modal images. It exploits the temporal commonality of multi-modal images acquired from the same organ during free-breathing. Strikingly there is no need for capturing the same region by the modalities. The method is based on extracting a low-dimensional description of the image sequences, selecting the common cause signal (breathing) for both modalities and finding the most similar sub-sequences for predicting image feature location. The approach was evaluated for 3 volunteers on sequences of 2D MRI and 2D US images of the liver acquired at different locations. Simultaneous acquisition of these images allowed for quantitative evaluation (predicted versus ground truth MRI feature locations). The best performance was achieved with signal extraction by slow feature analysis resulting in an average error of 2.6 mm (4.2 mm) for sequences acquired at the same (a different) time.
- Published
- 2011
26. An MR-compliant phased-array HIFU transducer with augmented steering range, dedicated to abdominal thermotherapy.
- Author
-
Vincent Auboiroux, Erik Dumont, Lorena Petrusca, Magalie Viallon, and Rares Salomir
- Subjects
HIGH-intensity focused ultrasound ,THERMOTHERAPY ,MAGNETIC resonance imaging ,ACOUSTIC radiation force impulse imaging ,BIOMEDICAL transducers ,COST effectiveness ,MEDICAL imaging systems - Abstract
A novel architecture for a phased-array high intensity focused ultrasound (HIFU) device was investigated, aiming to increase the capabilities of electronic steering without reducing the size of the elementary emitters. The principal medical application expected to benefit from these developments is the time-effective sonication of large tumours in moving organs. The underlying principle consists of dividing the full array of transducers into multiple sub-arrays of different resonance frequencies, with the reorientation of these individual emitters, such that each sub-array can focus within a given spatial zone. To enable magnetic resonance (MR) compatibility of the device and the number of output channels from the RF generator to be halved, a passive spectral multiplexing technique was used, consisting of parallel wiring of frequency-shifted paired piezoceramic emitters with intrinsic narrow-band response. Two families of 64 emitters (circular, 5 mm diameter) were mounted, with optimum efficiency at 0.96 and 1.03 MHz, respectively. Two different prototypes of the HIFU device were built and tested, each incorporating the same two families of emitters, but differing in the shape of the rapid prototyping plastic support that accommodated the transducers (spherical cap with radius of curvature/aperture of 130 mm/150 mm and, respectively, 80 mm/110 mm). Acoustic measurements, MR-acoustic radiation force imaging (ex vivo) and MR-thermometry (ex vivo and in vivo) were used for the characterization of the prototypes. Experimental results demonstrated an augmentation of the steering range by 80% along one preferentially chosen axis, compared to a classic spherical array of the same total number of elements. The electric power density provided to the piezoceramic transducers exceeded 50 W cm[?]2 CW, without circulation of coolant water. Another important advantage of the current approach is the versatility of reshaping the array at low cost. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
27. Notice of Removal: Doppler velocity estimation in 3D cardiac ultrafast ultrasound imaging: An in vitro study
- Author
-
Emilia Badescu, Denis Friboulet, Damien Garcia, Herve Liebgott, and Lorena Petrusca
- Subjects
Beamforming ,Motion analysis ,medicine.diagnostic_test ,Computer science ,business.industry ,Acoustics ,Doppler velocity ,Ultrasonic imaging ,symbols.namesake ,Transducer ,Optics ,symbols ,medicine ,Ultrasound imaging ,3D ultrasound ,business ,Doppler effect ,Image resolution ,Ultrashort pulse - Abstract
The emergence of ultrafast imaging allowed new insights into cardiac deformation/motion analysis that enabled new advancements in clinical diagnosis. Several studies showed that a good compromise between the temporal and the spatial resolution can be obtained by transmitting multiple focused beams (MLT) simultaneously. However, the current implementation of MLT in 3D cannot be used in dynamic conditions as it was obtained synthetically, by summing the Single Line Transmit (SLT) events before beamforming [Ortega et al., TUFFC, 2016]. The objective of this study is to evaluate for the first time the performance of MLT in 3D ultrasound under dynamic conditions.
- Full Text
- View/download PDF
28. Multi-line transmission for 3D ultrasound imaging: An experimental study
- Author
-
Herve Liebgott, Lorena Petrusca, Denis Friboulet, Denis Bujoreanu, Emilia Badescu, Imagerie Ultrasonore, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), RMN et optique : De la mesure au biomarqueur, Images et Modèles, 3 - Imagerie Ultrasonore, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé ( CREATIS ), Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ) -Hospices Civils de Lyon ( HCL ) -Université Jean Monnet [Saint-Étienne] ( UJM ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ) -Centre National de la Recherche Scientifique ( CNRS ), 5 - RMN et optique : De la mesure aux biomarqueurs, 2 - Images et Modèles, Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Rayet, Béatrice
- Subjects
[SDV.IB.IMA]Life Sciences [q-bio]/Bioengineering/Imaging ,Computer science ,Image quality ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,multi-line trasmit ,0302 clinical medicine ,3D imaging ,experimental validation ,0103 physical sciences ,medicine ,3D ultrasound ,Computer vision ,010301 acoustics ,Image resolution ,[ SDV.IB.IMA ] Life Sciences [q-bio]/Bioengineering/Imaging ,Cardiac imaging ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,high frame rate ,medicine.diagnostic_test ,[ SPI.ACOU ] Engineering Sciences [physics]/Acoustics [physics.class-ph] ,ultrasound ,business.industry ,Ultrasound ,Frame rate ,[SDV.IB.IMA] Life Sciences [q-bio]/Bioengineering/Imaging ,Signal-to-noise ratio (imaging) ,Artificial intelligence ,business - Abstract
International audience; Background, Motivation and ObjectiveAchieving a high frame rate in echocardiography is highly important for quantifying the short phases of the cardiac cycle that contain valuable information for medical diagnosis. Additionally, the 3D quantitative assessment of the heart would significantly improve the current measurements used in daily clinical routine. Nevertheless, obtaining ultrafast imagesremains a challenge due to the trade-off between the image quality and a high frame rate, especially when volumetric data is acquired. Among the current ultrafast imaging methods, multi-line-transmit imaging (MLT) provides an increased frame rate but in the same time mostly preserves the image quality. However, the current implementation of this methodin 3D proposed by Ortega et al. [IEEE TUFC 2016] is based on generating the MLT data synthetically by summing up the raw data before beamforming. In this paper we present the first real-time implementation of the MLT in 3D ultrasound.Statement of Contribution/MethodsMulti-line-transmission was performed by dividing the angular aperture into three regions. Then, due to practical limitations, three equally spaced focused beams were transmitted simultaneously in the first YZ plane of the first region. Once the transmission for a full YZ plane was completed, the process was repeated for the first YZ plane of the second region. The same steps were followed till the full volume was insonified. Data acquisition was performed using four Verasonics systems synchronized to drive a 32x32 matrix probe. A transmit frequency of 2.97 MHz was used and the images were acquired using a sampling frequency of 11.9 MHz. The focal point was set to 6.7 cm depth along 27 different angles in elevational direction (YZ) and 30 angles in azimuthal direction (XZ) between -20º and 20º.Results/DiscussionThe contrast and the resolution assessment, performed on a CIRS ultrasound phantom (Figure 1) showed a contrast of 6.36 dB and a mean axial (lateral) resolution of 0.9 mm (1.77 mm) measured for different depths. These values are comparable with those obtained for a 3D focused sequence obtained by using the same emission parameters. The results indicate the potential of MLT 3D for achieving high contrast and resolution while increasing the frame rate. This study thus demonstrates the feasibility of 3D MLT in real-time and extends its possible applications to dynamic cardiac imaging.
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.