Abstract: During the last years, the Ratip package has been found useful for calculating the excitation and decay properties of free atoms. Based on the (relativistic) multiconfiguration Dirac–Fock method, this program is used to obtain accurate predictions of atomic properties and to analyze many recent experiments. The daily work with this package made an extension of its Utilities [S. Fritzsche, Comput. Phys. Comm. 141 (2001) 163] desirable in order to facilitate the data handling and interpretation of complex spectra. For this purpose, we make available an enlarged version of the Utilities which mainly supports the comparison with experiment as well as large Auger computations. Altogether 13 additional tasks have been appended to the program together with a new menu structure to improve the interactive control of the program. Program summary: Title of program: RATIP Catalogue identifier: ADPD_v2_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADPD_v2_0 Program obtainable from: CPC Program Library, Queen''s University of Belfast, N. Ireland Licensing provisions: none Reference in CPC to previous version: S. Fritzsche, Comput. Phys. Comm. 141 (2001) 163 Catalogue identifier of previous version: ADPD Authors of previous version: S. Fritzsche, Department of Physics, University of Kassel, Heinrich-Plett-Strasse 40, D-34132 Kassel, Germany Does the new version supersede the original program?: yes Computer for which the new version is designed and others on which it has been tested: IBM RS 6000, PC Pentium II–IV Installations: University of Kassel (Germany), University of Oulu (Finland) Operating systems: IBM AIX, Linux, Unix Program language used in the new version: ANSI standard Fortran 90/95 Memory required to execute with typical data: 300 kB No. of bits in a word: All real variables are parameterized by a selected kind parameter and, thus, can be adapted to any required precision if supported by the compiler. Currently, the kind parameter is set to double precision (two 32-bit words) as used also for other components of the Ratip package [S. Fritzsche, C.F. Fischer, C.Z. Dong, Comput. Phys. Comm. 124 (2000) 341; G. Gaigalas, S. Fritzsche, Comput. Phys. Comm. 134 (2001) 86; S. Fritzsche, Comput. Phys. Comm. 141 (2001) 163; S. Fritzsche, J. Elec. Spec. Rel. Phen. 114–116 (2001) 1155] No. of lines in distributed program, including test data, etc.:231 813 No. of bytes in distributed program, including test data, etc.: 3 977 387 Distribution format: tar.gzip file Nature of the physical problem: In order to describe atomic excitation and decay properties also quantitatively, large-scale computations are often needed. In the framework of the Ratip package, the Utilities support a variety of (small) tasks. For example, these tasks facilitate the file and data handling in large-scale applications or in the interpretation of complex spectra. Method of solution: The revised Utilities now support a total of 29 subtasks which are mainly concerned with the manipulation of output data as obtained from other components of the Ratip package. Each of these tasks are realized by one or several subprocedures which have access to the corresponding modules of the main components. While the main menu defines seven groups of subtasks for data manipulations and computations, a particular task is selected from one of these group menus. This allows to enlarge the program later if technical support for further tasks will become necessary. For each selected task, an interactive dialog about the required input and output data as well as a few additional information are printed during the execution of the program. Reasons for the new version: The requirement for enlarging the previous version of the Utilities [S. Fritzsche, Comput. Phys. Comm. 141 (2001) 163] arose from the recent application of the Ratip package for large-scale radiative and Auger computations. A number of new subtasks now refer to the handling of Auger amplitudes and their proper combination in order to facilitate the interpretation of complex spectra. A few further tasks, such as the direct access to the one-electron matrix elements for some given set of orbital functions, have been found useful also in the analysis of data. Summary of revisions: extraction and handling of atomic data within the framework of Ratip. With the revised version, we now ‘add’ another 13 tasks which refer to the manipulation of data files, the generation and interpretation of Auger spectra, the computation of various one- and two-electron matrix elements as well as the evaluation of momentum densities and grid parameters. Owing to the rather large number of subtasks, the main menu has been divided into seven groups from which the individual tasks can be selected very similarly as before. Typical running time: The program responds promptly for most of the tasks. The responding time for some tasks, such as the generation of a relativistic momentum density, strongly depends on the size of the corresponding data files and the number of grid points. Unusual features of the program: A total of 29 different tasks are supported by the program. Starting from the main menu, the user is guided interactively through the program by a dialog and a few additional explanations. For each task, a short summary about its function is displayed before the program prompts for all the required input data. [Copyright &y& Elsevier]