1. The Manufacture of Unbreakable Bionics via Multifunctional and Self-Healing Silk-Graphene Hydrogels
- Author
-
Cristian Florian Mitu, Arnold Knott, Mohammadjavad Jahanshahi, Mehdi Mehrali, Tiberiu-Gabriel Zsurzsan, Malgorzata Karolina Pierchala, Mohammad-Ali Shahbazi, Nayere Taebnia, Alireza Dolatshahi-Pirouz, Thomas Lars Andresen, Masoud Hasany, Firoz Babu Kadumudi, Nanomedicines and Biomedical Engineering, Division of Pharmaceutical Chemistry and Technology, and Drug Research Program
- Subjects
TOUGH ,Materials science ,Bionics ,INTERPLAY ,Stretchable electronics ,Soft robotics ,Silk ,FABRICATION ,Fibroin ,Silk fibroin ,Strain-sensors ,Nanotechnology ,02 engineering and technology ,010402 general chemistry ,01 natural sciences ,flexible electronics ,strain-sensors ,STRENGTH ,General Materials Science ,STRETCHABLE ELECTRONICS ,Flexible electronics ,Bioelectronics ,318 Medical biotechnology ,DOUBLE NETWORK HYDROGEL ,Mechanical Engineering ,graphene ,Hydrogels ,TANNIC-ACID ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,TRANSPARENT ,2D nanomaterials and 3D printing ,Mechanics of Materials ,silk fibroin ,317 Pharmacy ,Self-healing ,Self-healing hydrogels ,FIBROIN ,Graphite ,Graphene ,ADHESIVE ,221 Nano-technology ,0210 nano-technology - Abstract
Biomaterials capable of transmitting signals over longer distances than those in rigid electronics can open new opportunities for humanity by mimicking the way tissues propagate information. For seamless mirroring of the human body, they also have to display conformability to its curvilinear architecture, as well as, reproducing native-like mechanical and electrical properties combined with the ability to self-heal on demand like native organs and tissues. Along these lines, a multifunctional composite is developed by mixing silk fibroin and reduced graphene oxide. The material is coined "CareGum" and capitalizes on a phenolic glue to facilitate sacrificial and hierarchical hydrogen bonds. The hierarchal bonding scheme gives rise to high mechanical toughness, record-breaking elongation capacity of approximate to 25 000%, excellent conformability to arbitrary and complex surfaces, 3D printability, a tenfold increase in electrical conductivity, and a fourfold increase in Young's modulus compared to its pristine counterpart. By taking advantage of these unique properties, a durable and self-healing bionic glove is developed for hand gesture sensing and sign translation. Indeed, CareGum is a new advanced material with promising applications in fields like cyborganics, bionics, soft robotics, human-machine interfaces, 3D-printed electronics, and flexible bioelectronics.
- Published
- 2021
- Full Text
- View/download PDF