Oxley TJ, Yoo PE, Rind GS, Ronayne SM, Lee CMS, Bird C, Hampshire V, Sharma RP, Morokoff A, Williams DL, MacIsaac C, Howard ME, Irving L, Vrljic I, Williams C, John SE, Weissenborn F, Dazenko M, Balabanski AH, Friedenberg D, Burkitt AN, Wong YT, Drummond KJ, Desmond P, Weber D, Denison T, Hochberg LR, Mathers S, O'Brien TJ, May CN, Mocco J, Grayden DB, Campbell BCV, Mitchell P, and Opie NL
Background: Implantable brain-computer interfaces (BCIs), functioning as motor neuroprostheses, have the potential to restore voluntary motor impulses to control digital devices and improve functional independence in patients with severe paralysis due to brain, spinal cord, peripheral nerve or muscle dysfunction. However, reports to date have had limited clinical translation., Methods: Two participants with amyotrophic lateral sclerosis (ALS) underwent implant in a single-arm, open-label, prospective, early feasibility study. Using a minimally invasive neurointervention procedure, a novel endovascular Stentrode BCI was implanted in the superior sagittal sinus adjacent to primary motor cortex. The participants undertook machine-learning-assisted training to use wirelessly transmitted electrocorticography signal associated with attempted movements to control multiple mouse-click actions, including zoom and left-click. Used in combination with an eye-tracker for cursor navigation, participants achieved Windows 10 operating system control to conduct instrumental activities of daily living (IADL) tasks., Results: Unsupervised home use commenced from day 86 onwards for participant 1, and day 71 for participant 2. Participant 1 achieved a typing task average click selection accuracy of 92.63% (100.00%, 87.50%-100.00%) (trial mean (median, Q1-Q3)) at a rate of 13.81 (13.44, 10.96-16.09) correct characters per minute (CCPM) with predictive text disabled. Participant 2 achieved an average click selection accuracy of 93.18% (100.00%, 88.19%-100.00%) at 20.10 (17.73, 12.27-26.50) CCPM. Completion of IADL tasks including text messaging, online shopping and managing finances independently was demonstrated in both participants., Conclusion: We describe the first-in-human experience of a minimally invasive, fully implanted, wireless, ambulatory motor neuroprosthesis using an endovascular stent-electrode array to transmit electrocorticography signals from the motor cortex for multiple command control of digital devices in two participants with flaccid upper limb paralysis., Competing Interests: Competing interests: TJO reports stock options from Synchron, during the conduct of the study; in addition, TJO has a patent sensing or stimulating activity of tissue issued, and a patent sensing or stimulating activity of tissue pending. PEY reports stock options from Synchron, during the conduct of the study; in addition, PEY has a patent sensing or stimulating activity of tissue issued, and a patent sensing or stimulating activity of tissue pending. GSR reports stock options from Synchron, during the conduct of the study; in addition, GSR has a patent sensing or stimulating activity of tissue issued, and a patent sensing or stimulating activity of tissue pending. SMR reports stock options from Synchron, during the conduct of the study; in addition, SMR has a patent sensing or stimulating activity of tissue issued, and a patent sensing or stimulating activity of tissue pending. RPS reports stock options from Synchron, during the conduct of the study. VH reports personal fees from Synchron, during the conduct of the study. LRH reports that The Massachusetts General Hospital (MGH) Translational Research Center (TRC) has clinical research support agreements with Synchron, Paradromics and Neuralink, for which LRH provides consultative input. TD reports personal fees from Synchron, during the conduct of the study. JM reports stock options from Synchron, during the conduct of the study. NLO reports stock options from Synchron, during the conduct of the study; in addition, NLO has a patent sensing or stimulating activity of tissue issued, and a patent sensing or stimulating activity of tissue pending., (© Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.)