1. Pregnenolone 16-Alpha Carbonitrile, an Agonist of Rodent Pregnane X Receptor, Regulates Testosterone Biosynthesis in Rodent Leydig Cells.
- Author
-
Salamat, Julia M., Ayala, Elizabeth M., Huang, Chen-Che J., Wilbanks, Frank S., Knight, Rachel C., Akingbemi, Benson T., and Pondugula, Satyanarayana R.
- Subjects
PREGNANE X receptor ,LEYDIG cells ,SEX hormones ,XENOBIOTICS ,GENE expression - Abstract
Leydig cells (LCs) in the testes produce the male sex hormone testosterone (T). Several xenobiotics, including clinical drugs, supplements, and environmental chemicals, are known to disrupt T homeostasis. Notably, some of these xenobiotics are known to activate the pregnane X receptor (PXR), a ligand-dependent nuclear receptor. However, it is currently unknown whether PXR is expressed in LCs and whether PXR activation alters T synthesis in rodent LCs. Therefore, in this study, we sought to determine whether PXR is expressed in rodent LCs and whether pregnenolone 16-alpha carbonitrile (PCN), the prototype agonist of rodent PXR, regulates T biosynthesis in rodent LCs. Hormonal as well as protein and gene expression analyses were conducted in rat primary LCs and MA-10 mouse Leydig cells. Results showed that PXR was expressed at the mRNA and protein level in both rat primary LCs and MA-10 cells. Incubation of rat primary LCs with PCN resulted in a significant decrease in T secretion. This PCN-induced decrease in T secretion was associated with decreased protein expression of key steroidogenic enzymes such as 3β-HSD and CYP17A1. RNA-seq results from MA-10 cells showed that PCN down-regulated the transcripts of steroidogenic enzymes and proteins involved in the T synthesis pathway. Together, these results suggest that PCN, an agonist of rodent PXR, can regulate T biosynthesis in rodent LCs by down-regulating the expression of the steroidogenic enzymes involved in T biosynthesis. Our results are significant as they provide a potential novel mechanism for disruption of testosterone homeostasis by a variety of xenobiotics. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF