A. Brotodewo, C. H. H. Conor, Claire E. Wade, Anthony Reid, C. J. Tiddy, Brotodewo, A, Tiddy, CJ, Reid, A, Wade, C, and Conor, C
The ca 1600–1580 Ma time interval is recognised as a significant period of magmatism, deformation and mineralisation throughout eastern Proterozoic Australia. Within the northern Yorke Peninsula in South Australia, this period was associated with the emplacement of multiple phases of the Tickera Granite, an intensely foliated quartz alkali-feldspar syenite, a leucotonalite and an alkali-feldspar granite. These granites belong to the broader Hiltaba Suite that was emplaced at shallow crustal levels throughout the Gawler Craton. Geochemical and isotopic analysis suggests these granite phases were derived from a heterogeneous source region. The syenite and alkali-feldspar granite were derived from similar source regions, likely the underlying ca 1850 Ma Donington Suite and/or the ca 1750 Ma Wallaroo Group metasediments with some contamination from an Archean basement. The leucotonalite is sourced from a similar but more mafic/lower crustal source. Phases of the Tickera Granite were emplaced synchronously with deformation that resulted in development of a prominent northeast-trending structural grain throughout the Yorke Peninsula region. This fabric is associated with composite events resulting from folding, shearing and faulting within the region. The intense deformation and intrusion of granites within this period resulted in mineralisation throughout the region, as seen in Wheal Hughes and Poona mines. The Yorke Peninsula shares a common geological history with the Curnamona Province, which was deformed during the ca 1600–1585 Ma Olarian Orogeny, and resulted in development of early isoclinal and recumbent folds overprinted by an upright fold generation, a dominant northeast-trending structural grain, mineralisation, and spatially and temporally related intrusions. This suggests correlation of parts of the Gawler Craton with the Curnamona Province, and that the Olarian Orogeny also affected the southeastern Gawler Craton. Refereed/Peer-reviewed