4 results on '"Tischitz M"'
Search Results
2. Functionally overlapping intra- and extralysosomal pathways promote bis(monoacylglycero)phosphate synthesis in mammalian cells.
- Author
-
Bulfon D, Breithofer J, Grabner GF, Fawzy N, Pirchheim A, Wolinski H, Kolb D, Hartig L, Tischitz M, Zitta C, Bramerdorfer G, Lass A, Taschler U, Kratky D, Greimel P, and Zimmermann R
- Subjects
- Humans, HEK293 Cells, Animals, Acylation, Lipase metabolism, Lipase genetics, Mice, Monoglycerides metabolism, Lysophospholipids metabolism, Lysosomes metabolism, Phosphatidylglycerols metabolism
- Abstract
Bis(monoacylglycero)phosphate (BMP) is a major phospholipid constituent of intralumenal membranes in late endosomes/lysosomes, where it regulates the degradation and sorting of lipid cargo. Recent observations suggest that the Batten disease-associated protein CLN5 functions as lysosomal BMP synthase. Here, we show that transacylation reactions catalyzed by cytosolic and secreted enzymes enhance BMP synthesis independently of CLN5. The transacylases identified in this study are capable of acylating the precursor lipid phosphatidylglycerol (PG), generating acyl-PG, which is subsequently hydrolyzed to BMP. Extracellularly, acyl-PG and BMP are generated by endothelial lipase in cooperation with other serum enzymes of the pancreatic lipase family. The intracellular acylation of PG is catalyzed by several members of the cytosolic phospholipase A2 group IV (PLA2G4) family. Overexpression of secreted or cytosolic transacylases was sufficient to correct BMP deficiency in HEK293 cells lacking CLN5. Collectively, our observations suggest that functionally overlapping pathways promote BMP synthesis in mammalian cells., Competing Interests: Competing interests The authors declare no competing interests., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. Phospholipase A2 group IVD mediates the transacylation of glycerophospholipids and acylglycerols.
- Author
-
Breithofer J, Bulfon D, Fawzy N, Tischitz M, Zitta C, Hartig L, Grabner GF, Pirchheim A, Hackl H, Taschler U, Lass A, Tam-Amersdorfer C, Strobl H, Kratky D, and Zimmermann R
- Abstract
In mammalian cells, glycerolipids are mainly synthesized using acyl-CoA-dependent mechanisms. The acyl-CoA-independent transfer of fatty acids between lipids, designated as transacylation reaction, represents an additional mechanism for lipid remodeling and synthesis pathways. Here, we demonstrate that human and mouse phospholipase A2 group IVD (PLA2G4D) catalyzes transacylase reactions using both phospholipids and acylglycerols as substrates. In the presence of monoglycerol and diacylglycerol (MAG and DAG), purified PLA2G4D generates DAG and triacylglycerol, respectively. The enzyme also transfers fatty acids between phospholipids and from phospholipids to acylglycerols. Overexpression of PLA2G4D in COS7 cells enhances the incorporation of polyunsaturated fatty acids into triacylglycerol stores and induces the accumulation of lysophospholipids. In the presence of exogenously added MAG, the enzyme strongly increases cellular DAG formation, while MAG levels are decreased. PLA2G4D is not or poorly detectable in commonly used cell lines. It is expressed in keratinocytes, where it is strongly upregulated by proinflammatory cytokines. Pla2g4d-deficient mouse keratinocytes exhibit complex lipidomic changes in response to cytokine treatment, indicating that PLA2G4D is involved in the remodeling of the lipidome under inflammatory conditions. Transcriptomic analysis revealed that PLA2G4D modulates fundamental biological processes including cell proliferation, differentiation, and signaling. Together, our observations demonstrate that PLA2G4D has broad substrate specificity for fatty acid donor and acceptor lipids, allowing the acyl-CoA-independent synthesis of both phospholipids and acylglycerols. Loss-of-function studies indicate that PLA2G4D affects metabolic and signaling pathways in keratinocytes, which is associated with complex lipidomic and transcriptomic alterations., Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
4. Bile acid-induced tissue factor activity in hepatocytes correlates with activation of farnesoid X receptor.
- Author
-
Greimel T, Jahnel J, Pohl S, Strini T, Tischitz M, Meier-Allard N, Holasek S, Meinel K, Aguiriano-Moser V, Zobel J, Haidl H, Gallistl S, Panzitt K, Wagner M, and Schlagenhauf A
- Subjects
- Apoptosis drug effects, Cell Survival drug effects, Deoxycholic Acid pharmacology, Hep G2 Cells, Humans, Isoxazoles pharmacology, Liver metabolism, Signal Transduction drug effects, Thrombin metabolism, Bile Acids and Salts metabolism, Hepatocytes metabolism, Receptors, Cytoplasmic and Nuclear metabolism, Thromboplastin metabolism
- Abstract
Bile acids (BA) have been found to promote coagulation by increasing tissue factor (TF) activity. The contribution of elevated BA levels and cholestasis to TF decryption within the liver parenchyma and the role of farnesoid X receptor (FXR) in this process remain unclear. We investigated the effects of BA on TF activity and thrombin generation in hepatocytes and correlated these effects with activation of FXR-dependent signaling and apoptosis. HepG2 cells and primary hepatocytes were incubated with chenodeoxycholic acid (CDCA), glycochenodeoxycholic acid (GCDCA), ursodeoxycholic acid (UCDA), or the synthetic FXR agonist GW4064 for 24 h. MTT tests demonstrated cell viability throughout experiments. TF activity was tested via factor Xa generation and thrombin generation was measured by calibrated automated thrombography. Increased TF activity alongside enhanced thrombin generation was observed with CDCA and GW4064 but not with GCDCA and UDCA. TF activity was substantially reduced when FXR activation was blocked with the antagonist DY 268. Quantitative polymerase chain reaction revealed upregulation of FXR target genes only by CDCA and GW4064. Western blot analysis and fluorescence microscopy showed no TF overexpression arguing for TF decryption. Caspase 3 activity measurements and flow cytometric analysis of Annexin V binding showed no signs of apoptosis. Long-term exposure of hepatocytes to nontoxic BA may cause intracellular FXR overstimulation, triggering TF decryption irrespective of the amphiphilic properties of BA. The effect of BA on TF activation correlates with the molecule's ability to enter the cells and activate FXR. TF decryption occurs independently of apoptotic mechanisms., (© 2021. The Author(s), under exclusive licence to United States and Canadian Academy of Pathology.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.