1. Generalized Misner-Sharp energy in generalized Rastall theory
- Author
-
Moradpour, H. and Valipour, M.
- Subjects
Thermodynamics -- Laws, regulations and rules -- Analysis ,Government regulation ,Physics - Abstract
Employing the unified first law of thermodynamics and the field equations of the generalized Rastall theory, we get the generalized Misner-Sharp mass of space-times for which [g.sub.tt] = [-g.sup.rr] = --f(r). The obtained result differs from those of the Einstein and Rastall theories. Moreover, using the first law of thermodynamics, the obtained generalized Misner-Sharp mass, and the field equations, the entropy of static spherically symmetric horizons are also addressed in the framework of the generalized Rastall theory. In addition, by generalizing the study to a flat Friedmann-Robertson-Walker (FRW) universe, the apparent horizon entropy is also calculated. Considering the effects of applying the Newtonian limit to the field equations on the coupling coefficients of the generalized Rastall theory, our study indicates (i) the obtained entropy-area relation is the same as that of the Rastall theory, and (ii) the Bekenstein entropy is recovered when the generalized Rastall theory reduces to the Einstein theory. The validity of the second law of thermodynamics is also investigated in the flat FRW universe. Key words: Misner-Sharp mass, FRW universe, static spherically symmetric, entropy, thermodynamic laws. Resume: En combinant l'utilisation de la premiere loi de la thermodynamique avec les equations de champ de la theorie de Rastall generalisee, nous obtenons la masse de Misner-Sharp generalisee d'espaces-temps pour lesquels [g.sub.tt] = [- g.sup.rr] = f(r). Ce resultat differe de ceux obtenus des theories d'Einstein et de Rastall. Par la suite, utilisant la premiere loi de la thermodynamique, la masse de Misner-Sharp generalisee et les equations de champ, nous evaluons l'entropie des horizons statiques et spheriquement symetriques dans le cadre de la theorie generalisee de Rastall. De plus, en generalisant l'etude a un univers << Friedmann-Robertson-Walker >> (FRW) plat, nous calculons l'entropie de l'horizon apparent. En considerant les effets de l'application de la limite newtonienne aux equations de champ sur les coefficients de couplage de la theorie generalisee de Rastall, notre etude montre que (i) la relation entropie-surface est la meme que celle de la theorie de Rastall generalisee et (ii) nous retrouvons l'entropie de Bekenstein lorsque la theorie generalisee de Rastall se reduit a la theorie d'Einstein. Nous etudions aussi la validite de la seconde loi de la thermodynamique dans un univers FRW plat. [Traduit par la Redaction] Mots-cles: masse de Misner-Sharp, univers FRW, statique et spheriquement symetrique, entropie, lois de la thermodynamique., 1. Introduction Based on curvature-matter non-minimal coupling theories, the ordinary energy-momentum conservation law is not valid [1-3], a hypothesis included in the Rastall theory [4]. In this framework, energy can [...]
- Published
- 2020