9 results on '"Wyszynski, G."'
Search Results
2. A device for simultaneous spin analysis of ultracold neutrons
- Author
-
Afach, S., Ban, G., Bison, G., Bodek, K., Chowdhuri, Z., Daum, M., Fertl, M., Franke, B., Geltenbort, P., Grujić, Z. D., Hayen, L., Hélaine, V., Henneck, R., Kasprzak, M., Kermaïdic, Y., Kirch, K., Komposch, S., Kozela, A., Krempel, J., Lauss, B., Lefort, T., Lemière, Y., Mtchedlishvili, A., Naviliat-Cuncic, O., Piegsa, F. M., Pignol, G., Prashanth, P. N., Quéméner, G., Rawlik, M., Ries, D., Rebreyend, D., Roccia, S., Rozpedzik, D., Schmidt-Wellenburg, P., Severijns, N., Weis, A., Wursten, E., Wyszynski, G., Zejma, J., and Zsigmond, G.
- Published
- 2015
- Full Text
- View/download PDF
3. Measurement of a false electric dipole moment signal from 199Hg atoms exposed to an inhomogeneous magnetic field
- Author
-
Afach, S., Baker, C. A., Ban, G., Bison, G., Bodek, K., Chowdhuri, Z., Daum, M., Fertl, M., Franke, B., Geltenbort, P., Green, K., van der Grinten, M. G. D., Grujic, Z., Harris, P. G., Heil, W., Hélaine, V., Henneck, R., Horras, M., Iaydjiev, P., Ivanov, S. N., Kasprzak, M., Kermaïdic, Y., Kirch, K., Knowles, P., Koch, H.-C., Komposch, S., Kozela, A., Krempel, J., Lauss, B., Lefort, T., Lemière, Y., Mtchedlishvili, A., Naviliat-Cuncic, O., Pendlebury, J. M., Piegsa, F. M., Pignol, G., Prashant, P. N., Quéméner, G., Rebreyend, D., Ries, D., Roccia, S., Schmidt-Wellenburg, P., Severijns, N., Weis, A., Wursten, E., Wyszynski, G., Zejma, J., Zenner, J., and Zsigmond, G.
- Published
- 2015
- Full Text
- View/download PDF
4. Mapping of the magnetic field to correct systematic effects in a neutron electric dipole moment experiment
- Author
-
Abel, C., Ayres, N.J., Ban, G., Bison, G., Bodek, K., Bondar, V., Chanel, E., Chiu, P.-J., Clément, B., Crawford, C.B., Daum, M., Emmenegger, S., Ferraris-Bouchez, L., Fertl, M., Flaux, P., Fratangelo, A., Griffith, W.C., Grujić, Z.D., Harris, P.G., Hayen, L., Hild, N., Kasprzak, M., Kirch, K., Knowles, P., Koch, H.-C., Komposch, S., Koss, P.A., Kozela, A., Krempel, J., Lauss, B., Lefort, T., Lemière, Y., Mohanmurthy, P., Naviliat-Cuncic, O., Pais, D., Piegsa, F.M., Pignol, G., Prashanth, P.N., Quéméner, G., Rawlik, M., Ries, D., Rebreyend, D., Roccia, S., Rozpedzik, D., Schmidt-Wellenburg, P., Schnabel, A., Severijns, N., Thorne, J.A., Virot, R., Weis, A., Wursten, E., Wyszynski, G., Zejma, J., Zsigmond, G., Laboratoire de physique corpusculaire de Caen (LPCC), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Institut Laue-Langevin (ILL), ILL, and Publica
- Subjects
magnetic field: spatial distribution ,n: electric moment ,mercury ,Physics - Instrumentation and Detectors ,measurement methods ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det] ,Physics::Atomic Physics ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment - Abstract
Experiments dedicated to the measurement of the electric dipole moment of the neutron require outstanding control of the magnetic-field uniformity. The neutron electric dipole moment (nEDM) experiment at the Paul Scherrer Institute uses a Hg199 co-magnetometer to precisely monitor temporal magnetic-field variations. This co-magnetometer, in the presence of field nonuniformity, is, however, responsible for the largest systematic effect of this measurement. To evaluate and correct that effect, offline measurements of the field nonuniformity were performed during mapping campaigns in 2013, 2014, and 2017. We present the results of these campaigns, and the improvement the correction of this effect brings to the neutron electric dipole moment measurement. ISSN:1094-1622 ISSN:0556-2791 ISSN:1050-2947
- Published
- 2021
5. Constraining interactions mediated by axion-like particles with ultracold neutrons
- Author
-
Afach, S., Ban, G., Bison, G., Bodek, K., Burghoff, M., Daum, M., Fertl, M., Franke, B., Grujić, Z.D., Hélaine, V., Kasprzak, M., Kermaïdic, Y., Kirch, K., Knowles, P., Koch, H.-C., Komposch, S., Kozela, A., Krempel, J., Lauss, B., Lefort, T., Lemière, Y., Mtchedlishvili, A., Naviliat-Cuncic, O., Piegsa, F.M., Pignol, G., Prashanth, P.N., Quéméner, G., Rebreyend, D., Ries, D., Roccia, S., Schmidt-Wellenburg, P., Schnabel, A., Severijns, N., Voigt, J., Weis, A., Wyszynski, G., Zejma, J., Zenner, J., and Zsigmond, G.
- Published
- 2015
- Full Text
- View/download PDF
6. A measurement of the neutron to 199Hg magnetic moment ratio
- Author
-
Afach, S., Baker, C.A., Ban, G., Bison, G., Bodek, K., Burghoff, M., Chowdhuri, Z., Daum, M., Fertl, M., Franke, B., Geltenbort, P., Green, K., van der Grinten, M.G.D., Grujic, Z., Harris, P.G., Heil, W., Hélaine, V., Henneck, R., Horras, M., Iaydjiev, P., Ivanov, S.N., Kasprzak, M., Kermaïdic, Y., Kirch, K., Knecht, A., Koch, H.-C., Krempel, J., Kuźniak, M., Lauss, B., Lefort, T., Lemière, Y., Mtchedlishvili, A., Naviliat-Cuncic, O., Pendlebury, J.M., Perkowski, M., Pierre, E., Piegsa, F.M., Pignol, G., Prashanth, P.N., Quéméner, G., Rebreyend, D., Ries, D., Roccia, S., Schmidt-Wellenburg, P., Schnabel, A., Severijns, N., Shiers, D., Smith, K.F., Voigt, J., Weis, A., Wyszynski, G., Zejma, J., Zenner, J., and Zsigmond, G.
- Published
- 2014
- Full Text
- View/download PDF
7. Measurement of the Permanent Electric Dipole Moment of the Neutron.
- Author
-
Abel C, Afach S, Ayres NJ, Baker CA, Ban G, Bison G, Bodek K, Bondar V, Burghoff M, Chanel E, Chowdhuri Z, Chiu PJ, Clement B, Crawford CB, Daum M, Emmenegger S, Ferraris-Bouchez L, Fertl M, Flaux P, Franke B, Fratangelo A, Geltenbort P, Green K, Griffith WC, van der Grinten M, Grujić ZD, Harris PG, Hayen L, Heil W, Henneck R, Hélaine V, Hild N, Hodge Z, Horras M, Iaydjiev P, Ivanov SN, Kasprzak M, Kermaidic Y, Kirch K, Knecht A, Knowles P, Koch HC, Koss PA, Komposch S, Kozela A, Kraft A, Krempel J, Kuźniak M, Lauss B, Lefort T, Lemière Y, Leredde A, Mohanmurthy P, Mtchedlishvili A, Musgrave M, Naviliat-Cuncic O, Pais D, Piegsa FM, Pierre E, Pignol G, Plonka-Spehr C, Prashanth PN, Quéméner G, Rawlik M, Rebreyend D, Rienäcker I, Ries D, Roccia S, Rogel G, Rozpedzik D, Schnabel A, Schmidt-Wellenburg P, Severijns N, Shiers D, Tavakoli Dinani R, Thorne JA, Virot R, Voigt J, Weis A, Wursten E, Wyszynski G, Zejma J, Zenner J, and Zsigmond G
- Abstract
We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a ^{199}Hg comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is d_{n}=(0.0±1.1_{stat}±0.2_{sys})×10^{-26} e.cm.
- Published
- 2020
- Full Text
- View/download PDF
8. Observation of Gravitationally Induced Vertical Striation of Polarized Ultracold Neutrons by Spin-Echo Spectroscopy.
- Author
-
Afach S, Ayres NJ, Ban G, Bison G, Bodek K, Chowdhuri Z, Daum M, Fertl M, Franke B, Griffith WC, Grujić ZD, Harris PG, Heil W, Hélaine V, Kasprzak M, Kermaidic Y, Kirch K, Knowles P, Koch HC, Komposch S, Kozela A, Krempel J, Lauss B, Lefort T, Lemière Y, Mtchedlishvili A, Musgrave M, Naviliat-Cuncic O, Pendlebury JM, Piegsa FM, Pignol G, Plonka-Spehr C, Prashanth PN, Quéméner G, Rawlik M, Rebreyend D, Ries D, Roccia S, Rozpedzik D, Schmidt-Wellenburg P, Severijns N, Thorne JA, Weis A, Wursten E, Wyszynski G, Zejma J, Zenner J, and Zsigmond G
- Subjects
- Cold Temperature, Kinetics, Gravitation, Models, Theoretical, Neutrons
- Abstract
We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1 μT magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1 pT/cm. This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.
- Published
- 2015
- Full Text
- View/download PDF
9. Highly stable atomic vector magnetometer based on free spin precession.
- Author
-
Afach S, Ban G, Bison G, Bodek K, Chowdhuri Z, Grujić ZD, Hayen L, Hélaine V, Kasprzak M, Kirch K, Knowles P, Koch HC, Komposch S, Kozela A, Krempel J, Lauss B, Lefort T, Lemière Y, Mtchedlishvili A, Naviliat-Cuncic O, Piegsa FM, Prashanth PN, Quéméner G, Rawlik M, Ries D, Roccia S, Rozpedzik D, Schmidt-Wellenburg P, Severjins N, Weis A, Wursten E, Wyszynski G, Zejma J, and Zsigmond G
- Abstract
We present a magnetometer based on optically pumped Cs atoms that measures the magnitude and direction of a 1 μT magnetic field. Multiple circularly polarized laser beams were used to probe the free spin precession of the Cs atoms. The design was optimized for long-time stability and achieves a scalar resolution better than 300 fT for integration times ranging from 80 ms to 1000 s. The best scalar resolution of less than 80 fT was reached with integration times of 1.6 to 6 s. We were able to measure the magnetic field direction with a resolution better than 10 μrad for integration times from 10 s up to 2000 s.
- Published
- 2015
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.