4 results on '"Ye, Hao-nan"'
Search Results
2. A novel and efficient method for synthesizing magnetic PS-PMMA@Fe3O4 microspheres for protein separation and detection.
- Author
-
Dong, Ying, Ye, Hao-nan, He, Zheng-guo, Li, Wei, Yuan, Ming-long, and Li, Gan-peng
- Abstract
Immunoassay is the most widely used detection technique in clinical testing. Compared with the traditional enzyme-linked immunoassay, the chemiluminescence immunoassay system based on carboxylated magnetic beads as the separation tool is more advantageous, which can rapidly separate proteins and achieve the purpose of quantitative detection of proteins. Separation tools in chemiluminescence immunoassay techniques are key and the focus of research. However, the domestic technology of preparing carboxylated magnetic beads is still immature, and the market is monopolized by imported products, which is not conducive to the development of domestic chemiluminescence immunoassay technology. Based on this, we propose a simple and convenient new method for the preparation of magnetic microbeads. Firstly, styrene-methyl methacrylate microspheres were polymerized by dispersion polymerization and hydrolyzed to form carboxylated microspheres, then carboxylated microspheres were introduced in the process of classical coprecipitation reaction to synthesize magnetic microbeads, and magnetic microbeads with different magnetic contents were prepared and characterized. The separation effect was then tested by a fully automated chemiluminescence immunoassay analyzer, and it was found that carboxylated magnetic beads with a magnetic content of 20% were the most effective in separating proteins, and the coefficient of variation was as low as 3.41%, with a stable and reproducible performance. The chemiluminescence immunoassay technique can separate proteins in a short period of time with a very small amount of carboxylated magnetic microbeads, which is fast and efficient and will help in the early diagnosis of diseases in healthcare facilities and may be a better point-of-care assay.Graphical abstract: Immunoassay is the most widely used detection technique in clinical testing. Compared with the traditional enzyme-linked immunoassay, the chemiluminescence immunoassay system based on carboxylated magnetic beads as the separation tool is more advantageous, which can rapidly separate proteins and achieve the purpose of quantitative detection of proteins. Separation tools in chemiluminescence immunoassay techniques are key and the focus of research. However, the domestic technology of preparing carboxylated magnetic beads is still immature, and the market is monopolized by imported products, which is not conducive to the development of domestic chemiluminescence immunoassay technology. Based on this, we propose a simple and convenient new method for the preparation of magnetic microbeads. Firstly, styrene-methyl methacrylate microspheres were polymerized by dispersion polymerization and hydrolyzed to form carboxylated microspheres, then carboxylated microspheres were introduced in the process of classical coprecipitation reaction to synthesize magnetic microbeads, and magnetic microbeads with different magnetic contents were prepared and characterized. The separation effect was then tested by a fully automated chemiluminescence immunoassay analyzer, and it was found that carboxylated magnetic beads with a magnetic content of 20% were the most effective in separating proteins, and the coefficient of variation was as low as 3.41%, with a stable and reproducible performance. The chemiluminescence immunoassay technique can separate proteins in a short period of time with a very small amount of carboxylated magnetic microbeads, which is fast and efficient and will help in the early diagnosis of diseases in healthcare facilities and may be a better point-of-care assay. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Analysis of risk factors associated with flexor pollicis longus injury after volar plating of distal radius fractures.
- Author
-
Lv, Yang-Xun, Chen, Mang-Mang, Su, Chen-Xian, Ye, Hao-Nan, Yang, Jie, and Li, Jing
- Published
- 2021
- Full Text
- View/download PDF
4. Total hip revision with custom-made spacer and prosthesis: A case report.
- Author
-
Liu YB, Pan H, Chen L, Ye HN, Wu CC, Wu P, and Chen L
- Abstract
Background: Both periprosthetic joint infections (PJIs) and severe femoral segmental defects are catastrophic complications of total hip arthroplasty (THA), and both present a significant challenge in revisional surgery. There are limited data available to guide clinical decision making when both occur concurrently., Case Summary: A 61-year-old woman presented with a 6-mo history of a sinus tract at the site of her original THA incision. Radiological imaging revealed a total hip joint implant with an ipsilateral segmental femoral defect. Based on histological, radiological, laboratory, and clinical features, a diagnosis of concurrent chronic PJI and segmental femoral defect (Type IIIB, Paprosky classification) was made. After multidisciplinary team discussion, three-dimensional (3D)-printed, custom-made antibiotic spacers were created that could be used to mold antibiotic-loaded cement spacer. These were placed following PJI debridement in the first stage of revision surgery. After the PJI was eliminated, a 3D-printed, custom-made, femoral prosthesis was created to repair the considerable femoral defect. After 20-mo follow-up, the patient had excellent functional outcomes with a near-normal range of hip movement. So far, neither evidence of recurrent infection nor loosening of the prosthesis has been observed., Conclusion: We describe a case of "two-stage, custom-made" total hip revision to treat PJI with a concurrent segmental femoral defect. Use of a personalized, 3D-printed spacer and proximal femoral prosthesis led to satisfactory hip function and no early postoperative complications. Use of a customized implant provides surgeons with an alternative option for patients where no suitable spacer or implant is available. However, the long-term function, longevity, and cost-effectiveness of the use of custom-made prostheses have yet to be fully explored., Competing Interests: Conflict-of-interest statement: The authors declare that they have no conflict of interest to report., (©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.