1. Physiological and biochemical responses of osmo-primed parsley seeds subjected to saline stress.
- Author
-
de Paula Manjavachi, Matheus Kainan, Alexandre Silva, Tiago, Carvalho Guimarães, Cristiane, Pereira Sartori, Maria Márcia, and Amaral da Silva, Edvaldo Aparecido
- Subjects
- *
SEEDS , *PARSLEY , *SUPEROXIDE dismutase , *POLYETHYLENE glycol , *SALINE waters , *SALT - Abstract
Water and salt stress conditions affect germination and seedling emergence. It is known that physiological priming can not only trigger different mechanisms to increase the speed and uniformity of germination, but also influence the antioxidant defence system of the seeds, especially in adverse conditions. In this context, the objective of this work was to evaluate the physiological seed quality and the activity of antioxidant enzymes in seeds of Petroselinum crispum induced to tolerate saline stress through osmo-priming. Seeds were placed in polyethylene glycol solutions with three osmotic potentials (-0.5, -1.0 or -1.5 MPa) for 2, 4 or 6 days. Subsequently, they were placed on substrates moistened with sodium chloride solution (NaCl), in concentrations that generated osmotic potentials of -0.2, -0.4, -0.6, - 0.8 or -1.0 MPa, to germinate. The germination percentage, germination speed index, seedling length, fresh weight, dry weight and activity of the antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) were evaluated. Germination and germination speed index decreased linearly with the increase in NaCl concentrations, indicating the species sensitivity. As for length, fresh weight and dry weight of seedlings, this effect was more expressive from the potential of -0.4 MPa. The vigour and activity of SOD, POD, and CAT enzymes were reduced in unprimed seeds, emphasising the effectiveness of the technique. The induction of tolerance to saline stress can be related to the activity of the antioxidant system observed in seeds. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF