1. Investigating the Effect of Titanium Dioxide (TiO2) Pollution on the Performance of the Mono-crystalline Solar Module
- Author
-
Ahmed Darwish Zeki, Sopian K., Kazem Hussein A, Alghoul M.A., and Alawadhi Hussain
- Subjects
Titanium dioxide ,dust effect ,short circuit current ,open circuit voltage ,maximum power ,fill factor ,Environmental sciences ,GE1-350 - Abstract
This paper presents a study of titanium oxide TiO2 as one of the components of dust pollution affecting the PV performance. This pollutant can be found in various quantities in different locations around the world. The production of energy by different types of photovoltaic systems is very sensitive and depends on various environmental factors. Dust is one of the main contributing factors, yet the type of the dust is often neglected when studying the behaviour of the solar panel. In this experimental work we have studied the performance of the monocrystalline solar module as affected by the density of TiO2. The reduction of the PV module power caused by titanium dioxide under various mass densities was investigated. The results showed that the TiO2 has a significant effect on the PV output power. The dust density varied between 0-125 g.m-2. The corresponding reduction of the PV output power increased from 0 to 86.7%. This is based on various influencing parameters such as: short circuit current (Isc), maximum current (Im), open circuit voltage (Voc), maximum voltage (Vm), maximum power (Pm) and efficiency (E). Two functions are proposed as a mathematical model in order to explain this behaviour, namely the exponential and Fourier functions. The coefficients of all general models are valid for this type of dust with a density value ranging from 0-125 g.m-2.
- Published
- 2017
- Full Text
- View/download PDF