This thesis is devoted to the study of the dynamics of the gases with small Mach number. The model comes from the complete Navier-Stokes equations when the Mach number goes to zero, and we aim at showing that it is well-posed. The viscous and inviscid cases are both considered. The physical coefficients may depend on the unknown density (or on the unknown temperature).In particular, we consider the effects of the thermal conductivity and hence large variations of entropy are allowed. Recall that if there is no thermal diffusion, then the low Mach number limit just implies the incompressibility condition. In the framework considered here, by introducing a new solenoidal velocity field, the system becomes a nonlinear coupling between a quasi-parabolic equation for the density and an evolutionary Stokes (or Euler) system for the velocity and the pressure. For the case with viscosity, we establish classical results, namely the strong solutions exist locally (resp. globally) in time for big (resp. small) initial data. We consider the Cauchy problem in the critical Besov spaces with the lowest regularity. Under a special relationship between the two physical coefficients, the system recasts in a simpler form and one may prove that there exist weak solutions with finite energy. In dimension two, this implies that strong solutions with finite energy exist for all positive times. In the inviscid case, we first prove the well-posedness result in endpoint Besov spaces, which can be embedded into the set of Lipschitzian functions. Continuation criterions and estimates for the lifespan are both established.If we suppose the initial data to be in the borderline Besov spaces with infinite Lebesgue exponent and to be of finite energy, we also have a local existence result. In dimension two, the lifespan goes to infinity when the density tends to a positive constant. Estimates for products and commutators, together with a priori estimates for the parabolic equations and the Stokes (or Euler) system with variable coefficients, are postponed in the appendix. These estimates are based on the Littlewood-Paley theory and the paradifferential calculus; Cette thèse est consacrée à l'étude de la dynamique des gaz à faible nombre de Mach. Le modèle étudié provient des équations de Navier-Stokes complètes lorsque le nombre de Mach tend vers zéro. On cherche à montrer que le problème de Cauchy correspondant est bien posé. Les cas visqueux et non visqueux sont tous deux considérés. Les coefficients physiques peuvent dépendre de la densité (ou de la température) inconnue. En particulier, nous prenons en compte les effets de conductivité thermique et on autorise de grandes variations d'entropie. Rappelons qu'en absence de diffusion thermique, la limite à faible nombre de Mach implique la condition d'incompressibilité. Dans le cadre étudié ici, en introduisant un nouveau champ de vitesses à divergence nulle, le système devient un couplage non linéaire entre une équation quasi-parabolique pour la densité et un système de type Navier-Stokes (ou Euler) pour la vitesse et la pression. Pour le cas avec viscosité, on établit le résultat classique, à savoir qu'il existe une solution forte existant localement (resp. globalement) en temps pour des données initiales grandes (resp. petites). On considère ici le problème de Cauchy avec données initiales dans des espaces de Besov critiques. Lorsque les coefficients physiques du système vérifient une relation spéciale, le système se simplifie considérablement, et on peut alors établir qu'il existe des solutions faibles globales en temps à énergie finie. Par un argument d'unicité fort-faible, on en déduit que les solutions fortes à énergie finie existent pour tous les temps positifs en dimension deux. Pour le cas sans viscosité, on montre d'abord le caractère bien posé dans des espaces de Besov limites, qui s'injectent dans l'espace des fonctions lipschitziennes. Des critères de prolongement et des estimations du temps de vie sont établis. Si l'on suppose la donnée initiale à énergie finie dans l'espace de Besov limite à exposant de Lebesgue infini, on a également un résultat d'existence locale. En dimension deux, le temps de vie tend vers l'infini quand la densité tend vers une constante positive. Des estimations de produits et de commutateurs, ainsi que des estimations a priori pour les équations paraboliques et pour le système de Stokes (ou d'Euler) à coefficients variables, se trouvent dans l'annexe. Ces estimations reposent sur la théorie de Littlewood-Paley et le calcul paradifférentiel