1. How to use noise cross-correlation for the analysis of the wavefield properties and the tomogrpahy of the crust
- Author
-
Hubans, Fabien, Laboratoire de Géophysique Interne et Tectonophysique (LGIT), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Laboratoire Central des Ponts et Chaussées (LCPC)-Institut des Sciences de la Terre (ISTerre), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut national des sciences de l'Univers (INSU - CNRS)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-PRES Université de Grenoble-Institut de recherche pour le développement [IRD] : UR219-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR), Université Joseph-Fourier - Grenoble I, Anne Paul(anne.paul@obs.ujf-grenoble.fr), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Central des Ponts et Chaussées (LCPC)-Centre National de la Recherche Scientifique (CNRS), Hubans, Fabien, Institut des Sciences de la Terre [2011-2015] (ISTerre [2011-2015]), Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Central des Ponts et Chaussées (LCPC)-Observatoire des Sciences de l'Univers de Grenoble [1985-2015] (OSUG [1985-2015]), and Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut polytechnique de Grenoble - Grenoble Institute of Technology [2007-2019] (Grenoble INP [2007-2019])-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Seismic noise ,Aegean-Anatolian domain ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Anatolie ,crust ,tomography ,tomographie ,Bruit sismique ,Sources de bruit ,Egée ,noise source ,croûte ,cross-correlations ,[SDU.STU.GP] Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,corrélations - Abstract
Since 10 years, crustal tomography based on noise cross-correlations have been used in many regions. In most studies, the noise to signal ratio is used to select the correlations for the tomography. According to the theory, the cross-correlations of two noise records converge to the Green function in positive and negative parts if noise sources are homogeneously distributed around the stations. Therefor, the time symmetry of correlations is related to the quality of its convergence to the Green function. The symetry properties are related to the spatial distribution of noise sources and synchronisation between stations. We use this property to control the quality of SIMBAAD dataset and some data have been corrected. We use a particle motion analysis and a beamforming on all correlations to identify some sources of P waves in deep oceans. In the Aegean-Anatolian, noise sources are homogeneously distributed at 15 s but this distribution becomes heterogeneous at longer periods. For each pair of stations, we compare different components of the correlation tensor and we check the time symmetry to obtain the closest dispersion curve to the Green function. For each frequency, we inverse all travel times to reconstruct the group velocity maps for Rayleigh and Love waves. We inverse local dispersion curves to construct a 3D model of S wave velocity in the crust in the Aegean Anatolian domain. We observe some lateral changes for S wave velocity which are coherent to the geological structures (Sedimentary basin, continental crust, ...). We also prove there is some lateral changes of the depth of the Moho discontinuity. Our observations are coherent with previous geophysical studies. The Moho depth seems to be related with the recent deformation (younger than 15 My)., Depuis 10 ans, l'imagerie de la croûte par corrélations de bruit a été utilisée dans différentes régions. Ces études sélectionnent les corrélations sur la base du rapport signal sur bruit des signaux utilisés. Selon la théorie, les corrélations convergent vers les fonctions de Green en temps positif et négatif si la distribution des sources est homogène. Seule la vérification de la parité des corrélations permet d'évaluer la qualité de la convergence. Un écart à la parité fournit des informations sur la synchronisation des horloges des stations et la distribution des sources de bruit. Ainsi, l'analyse des variations des temps de propagation des parties causale et acausale nous a permis d'identifier des erreurs d'horloge pour des stations du jeu de données SIMBAAD. Une analyse de polarisation et l'utilisation de la formation de voie sur les corrélations ont permis de localiser des sources de bruit d'ondes P en océan profond. Dans la région Egée-Anatolie, à 15 s de période la distribution des sources de bruit est homogène et elle devient hétérogène à plus longues périodes. Nous utilisons la propriété de symétrie pour sélectionner les temps de propagation des ondes de surface (Love et Rayleigh) les plus représentatifs des fonctions de Green. L'inversion de ces temps de propagation permet de reconstruire les variations latérales des vitesses de groupe à toutes les fréquences. Les courbes de dispersions locales obtenues sont inversées pour construire un modèle en 3D de la vitesse des ondes S de la croûte pour la région Egée-Anatolie. Les variations latérales de la vitesse et de l'épaisseur de la croûte sont cohérentes avec la structure géologique connue, avec les résultats d'autres études géophysiques et avec la déformation récente.
- Published
- 2010